Make diangostic item naming consistent
Right now there is about a 50/50 split of naming diagnostic items as `vec_type` vs `Vec`. So it is hard to guess a diagnostic item name with confidence. I know it's not great to change these retroactively, but I think it will be much easier to maintain consistency after consistency is established.
Make *const (), *mut () okay for FFI
Pointer-to-() is used occasionally in the standard library to mean "pointer to none-of-your-business". Examples:
- `RawWakerVTable::new` https://doc.rust-lang.org/1.51.0/std/task/struct.RawWakerVTable.html#method.new
- `<*const T>::to_raw_parts` https://doc.rust-lang.org/nightly/std/primitive.pointer.html#method.to_raw_parts
I believe it's useful for the same purpose in FFI signatures, even while `()` itself is not FFI safe. The following should be allowed:
```rust
extern "C" {
fn demo(pc: *const (), pm: *mut ());
}
```
Prior to this PR, those pointers were not considered okay for an extern signature.
```console
warning: `extern` block uses type `()`, which is not FFI-safe
--> src/main.rs:2:17
|
2 | fn demo(pc: *const (), pm: *mut ());
| ^^^^^^^^^ not FFI-safe
|
= note: `#[warn(improper_ctypes)]` on by default
= help: consider using a struct instead
= note: tuples have unspecified layout
warning: `extern` block uses type `()`, which is not FFI-safe
--> src/main.rs:2:32
|
2 | fn demo(pc: *const (), pm: *mut ());
| ^^^^^^^ not FFI-safe
|
= help: consider using a struct instead
= note: tuples have unspecified layout
```
Implement `#[must_not_suspend]`
implements #83310
Some notes on the impl:
1. The code that searches for the attribute on the ADT is basically copied from the `must_use` lint. It's not shared, as the logic did diverge
2. The RFC does specify that the attribute can be placed on fn's (and fn-like objects), like `must_use`. I think this is a direct copy from the `must_use` reference definition. This implementation does NOT support this, as I felt that ADT's (+ `impl Trait` + `dyn Trait`) cover the usecase's people actually want on the RFC, and adding an imp for the fn call case would be significantly harder. The `must_use` impl can do a single check at fn call stmt time, but `must_not_suspend` would need to answer the question: "for some value X with type T, find any fn call that COULD have produced this value". That would require significant changes to `generator_interior.rs`, and I would need mentorship on that. `@eholk` and I are discussing it.
3. `@estebank` do you know a way I can make the user-provided `reason` note pop out? right now it seems quite hidden
Also, I am not sure if we should run perf on this
r? `@nikomatsakis`
This also adjusts the lint docs generation to accept (and ignore) an allow
attribute, rather than expecting the documentation to be immediately followed by
the lint name.
Gather module items after lowering.
This avoids having a non-local analysis inside lowering.
By implementing `hir_module_items` using a visitor, we make sure that iterations and visitors are consistent.
Fix ICE in `improper_ctypes_definitions` lint with all-ZST transparent types
Fixes#87496. There is also another function in the same file that looks fishy, but I haven't been able to produce an ICE there, and in any case, it's not related to #87496:
fd853c00e2/compiler/rustc_lint/src/types.rs (L720-L734)
r? ```@JohnTitor```
Const drop
The changes are pretty primitive at this point. But at least it works. ^-^
Problems with the current change that I can think of now:
- [x] `~const Drop` shouldn't change anything in the non-const world.
- [x] types that do not have drop glues shouldn't fail to satisfy `~const Drop` in const contexts. `struct S { a: u8, b: u16 }` This might not fail for `needs_non_const_drop`, but it will fail in `rustc_trait_selection`.
- [x] The current change accepts types that have `const Drop` impls but have non-const `Drop` glue.
Fixes#88424.
Significant Changes:
- `~const Drop` is no longer treated as a normal trait bound. In non-const contexts, this bound has no effect, but in const contexts, this restricts the input type and all of its transitive fields to either a) have a `const Drop` impl or b) can be trivially dropped (i.e. no drop glue)
- `T: ~const Drop` will not be linted like `T: Drop`.
- Instead of recursing and iterating through the type in `rustc_mir::transform::check_consts`, we use the trait system to special case `~const Drop`. See [`rustc_trait_selection::...::candidate_assembly#assemble_const_drop_candidates`](https://github.com/fee1-dead/rust/blob/const-drop/compiler/rustc_trait_selection/src/traits/select/candidate_assembly.rs#L817) and others.
Changes not related to `const Drop`ping and/or changes that are insignificant:
- `Node.constness_for_typeck` no longer returns `hir::Constness::Const` for type aliases in traits. This was previously used to hack how we determine default bound constness for items. But because we now use an explicit opt-in, it is no longer needed.
- Removed `is_const_impl_raw` query. We have `impl_constness`, and the only existing use of that query uses `HirId`, which means we can just operate it with hir.
- `ty::Destructor` now has a field `constness`, which represents the constness of the destructor.
r? `@oli-obk`
Avoid invoking the hir_crate query to traverse the HIR
Walking the HIR tree is done using the `hir_crate` query. However, this is unnecessary, since `hir_owner(CRATE_DEF_ID)` provides the same information. Since depending on `hir_crate` forces dependents to always be executed, this leads to unnecessary work.
By splitting HIR and attributes visits, we can avoid an edge to `hir_crate` when trying to visit the HIR tree.
Provide `layout_of` automatically (given tcx + param_env + error handling).
After #88337, there's no longer any uses of `LayoutOf` within `rustc_target` itself, so I realized I could move the trait to `rustc_middle::ty::layout` and redesign it a bit.
This is similar to #88338 (and supersedes it), but at no ergonomic loss, since there's no funky `C: LayoutOf<Ty = Ty>` -> `Ty: TyAbiInterface<C>` generic `impl` chain, and each `LayoutOf` still corresponds to one `impl` (of `LayoutOfHelpers`) for the specific context.
After this PR, this is what's needed to get `trait LayoutOf` (with the `layout_of` method) implemented on some context type:
* `TyCtxt`, via `HasTyCtxt`
* `ParamEnv`, via `HasParamEnv`
* a way to transform `LayoutError`s into the desired error type
* an error type of `!` can be paired with having `cx.layout_of(...)` return `TyAndLayout` *without* `Result<...>` around it, such as used by codegen
* this is done through a new `LayoutOfHelpers` trait (and so is specifying the type of `cx.layout_of(...)`)
When going through this path (and not bypassing it with a manual `impl` of `LayoutOf`), the end result is that only the error case can be customized, the query itself and the success paths are guaranteed to be uniform.
(**EDIT**: just noticed that because of the supertrait relationship, you cannot actually implement `LayoutOf` yourself, the blanket `impl` fully covers all possible context types that could ever implement it)
Part of the motivation for this shape of API is that I've been working on querifying `FnAbi::of_*`, and what I want/need to introduce for that looks a lot like the setup in this PR - in particular, it's harder to express the `FnAbi` methods in `rustc_target`, since they're much more tied to `rustc` concepts.
r? `@nagisa` cc `@oli-obk` `@bjorn3`
Introduce `let...else`
Tracking issue: #87335
The trickiest part for me was enforcing the diverging else block with clear diagnostics. Perhaps the obvious solution is to expand to `let _: ! = ..`, but I decided against this because, when a "mismatched type" error is found in typeck, there is no way to trace where in the HIR the expected type originated, AFAICT. In order to pass down this information, I believe we should introduce `Expectation::LetElseNever(HirId)` or maybe add `HirId` to `Expectation::HasType`, but I left that as a future enhancement. For now, I simply assert that the block is `!` with a custom `ObligationCauseCode`, and I think this is clear enough, at least to start. The downside here is that the error points at the entire block rather than the specific expression with the wrong type. I left a todo to this effect.
Overall, I believe this PR is feature-complete with regard to the RFC.
Warn when [T; N].into_iter() is ambiguous in the new edition.
Fixes https://github.com/rust-lang/rust/issues/88475
In https://github.com/rust-lang/rust/issues/88475, a situation was found where `[T; N].into_iter()` becomes *ambiguous* in the new edition. This is different than the case where `(&[T; N]).into_iter()` resolves differently, which was the only case handled by the `array_into_iter` lint. This is almost identical to the new-traits-in-the-prelude problem. Effectively, due to the array-into-iter hack disappearing in Rust 2021, we effectively added `IntoIterator` to the 'prelude' in Rust 2021 specifically for arrays.
This modifies the prelude collisions lint to detect that case and emit a `array_into_iter` lint in that case.
rustc_target: `TyAndLayout::field` should never error.
This refactor (making `TyAndLayout::field` return `TyAndLayout` without any `Result` around it) is based on a simple observation, regarding `TyAndLayout::field`:
If `cx.layout_of(ty)` succeeds (for some `cx` and `ty`), then `.field(cx, i)` on the resulting `TyAndLayout` should *always* succeed in computing `cx.layout_of(field_ty)` (where `field_ty` is the type of the `i`th field of `ty`).
The reason for this is that no matter which field is chosen, `cx.layout_of(field_ty)` *will have already been computed*, as part of computing `cx.layout_of(ty)`, as we cannot determine the layout of *any* type without considering the layouts of *all* of its fields.
And so it should be fine to turn any errors into ICEs, since they likely indicate a `cx` mismatch, or some other edge case that is due to a compiler bug (as opposed to ever being an user-facing error).
<hr/>
Each commit should probably be reviewed separately, though note that there's some `where` clauses (in `rustc_target::abi::call::*`) that change in most commits.
cc `@nagisa` `@oli-obk`
Refactor `named_asm_labels` to a HIR lint
As discussed on #88169, the `named_asm_labels` lint could be moved to a HIR lint. That allows future lints or custom plugins or clippy lints to more easily access the `asm!` macro's data and create better error messages with the lints.
Use custom wrap-around type instead of RangeInclusive
Two reasons:
1. More memory is allocated than necessary for `valid_range` in `Scalar`. The range is not used as an iterator and `exhausted` is never used.
2. `contains`, `count` etc. methods in `RangeInclusive` are doing very unhelpful(and dangerous!) things when used as a wrap-around range. - In general this PR wants to limit potentially confusing methods, that have a low probability of working.
Doing a local perf run, every metric shows improvement except for instructions.
Max-rss seem to have a very consistent improvement.
Sorry - newbie here, probably doing something wrong.
Remove `Session.used_attrs` and move logic to `CheckAttrVisitor`
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Improve wording of the `drop_bounds` lint
This PR addresses #86653. The issue is sort of a false positive of the `drop_bounds` lint, but I would argue that the best solution for #86653 is simply a rewording of the warning message and lint description, because even if the lint is _technically_ wrong, it still forces the programmer to think about what they are doing, and they can always use `#[allow(drop_bounds)]` if they think that they really need the `Drop` bound.
There are two issues with the current warning message and lint description:
- First, it says that `Drop` bounds are "useless", which is technically incorrect because they actually do have the effect of allowing you e.g. to call methods that also have a `Drop` bound on their generic arguments for some reason. I have changed the wording to emphasize not that the bound is "useless", but that it is most likely not what was intended.
- Second, it claims that `std::mem::needs_drop` detects whether a type has a destructor. But I think this is also technically wrong: The `Drop` bound says whether the type has a destructor or not, whereas `std::mem::needs_drop` also takes nested types with destructors into account, even if the top-level type does not itself have one (although I'm not 100% sure about the exact terminology here, i.e. whether the "drop glue" of the top-level type counts as a destructor or not).
cc `@jonhoo,` does this solve the issue for you?
r? `@GuillaumeGomez`
Instead of updating global state to mark attributes as used,
we now explicitly emit a warning when an attribute is used in
an unsupported position. As a side effect, we are to emit more
detailed warning messages (instead of just a generic "unused" message).
`Session.check_name` is removed, since its only purpose was to mark
the attribute as used. All of the callers are modified to use
`Attribute.has_name`
Additionally, `AttributeType::AssumedUsed` is removed - an 'assumed
used' attribute is implemented by simply not performing any checks
in `CheckAttrVisitor` for a particular attribute.
We no longer emit unused attribute warnings for the `#[rustc_dummy]`
attribute - it's an internal attribute used for tests, so it doesn't
mark sense to treat it as 'unused'.
With this commit, a large source of global untracked state is removed.
Force warn improvements
As part of stablization of the `--force-warn` option (#86516) I've made the following changes:
* Error when the `warnings` lint group is based to the `--force-warn` option
* Tests have been updated to make it easier to understand the semantics of `--force-warn`
r? `@nikomatsakis`
Improve non_fmt_panics suggestion based on trait impls.
This improves the non_fmt_panics lint suggestions by checking first which trait (Display or Debug) are actually implemented on the type.
Fixes https://github.com/rust-lang/rust/issues/87313
Fixes https://github.com/rust-lang/rust/issues/87999
Before:
```
help: add a "{}" format string to Display the message
|
2 | panic!("{}", Some(1));
| +++++
help: or use std::panic::panic_any instead
|
2 | std::panic::panic_any(Some(1));
| ~~~~~~~~~~~~~~~~~~~~~
```
After:
```
help: add a "{:?}" format string to use the Debug implementation of `Option<i32>`
|
2 | panic!("{:?}", Some(1));
| +++++++
help: or use std::panic::panic_any instead
|
2 | std::panic::panic_any(Some(1));
| ~~~~~~~~~~~~~~~~~~~~~
```
r? `@estebank`
Detect fake spans in non_fmt_panic lint.
This addresses https://github.com/rust-lang/rust/issues/87621
Some proc_macros claim that the user wrote all of the tokens it outputs, by applying a span from the input to all of the produced tokens. That can result in confusing suggestions, as in #87621. This is a simple patch that avoids suggesting anything for `panic!("{}")` if the span of `"{}"` and `panic!(..)` are identical, which is normally not possible.
Uplift the invalid_atomic_ordering lint from clippy to rustc
This is mostly just a rebase of https://github.com/rust-lang/rust/pull/79654; I've copy/pasted the text from that PR below.
r? `@lcnr` since you reviewed the last one, but feel free to reassign.
---
This is an implementation of https://github.com/rust-lang/compiler-team/issues/390.
As mentioned, in general this turns an unconditional runtime panic into a (compile time) lint failure. It has no false positives, and the only false negatives I'm aware of are if `Ordering` isn't specified directly and is comes from an argument/constant/whatever.
As a result of it having no false positives, and the alternative always being strictly wrong, it's on as deny by default. This seems right.
In the [zulip stream](https://rust-lang.zulipchat.com/#narrow/stream/233931-t-compiler.2Fmajor-changes/topic/Uplift.20the.20.60invalid_atomic_ordering.60.20lint.20from.20clippy/near/218483957) `@joshtriplett` suggested that lang team should FCP this before landing it. Perhaps libs team cares too?
---
Some notes on the code for reviewers / others below
## Changes from clippy
The code is changed from [the implementation in clippy](68cf94f6a6/clippy_lints/src/atomic_ordering.rs) in the following ways:
1. Uses `Symbols` and `rustc_diagnostic_item`s instead of string literals.
- It's possible I should have just invoked Symbol::intern for some of these instead? Seems better to use symbol, but it did require adding several.
2. The functions are moved to static methods inside the lint struct, as a way to namespace them.
- There's a lot of other code in that file — which I picked as the location for this lint because `@jyn514` told me that seemed reasonable.
3. Supports unstable AtomicU128/AtomicI128.
- I did this because it was almost easier to support them than not — not supporting them would have (ideally) required finding a way not to give them a `rustc_diagnostic_item`, which would have complicated an already big macro.
- These don't have tests since I wasn't sure if/how I should make tests conditional on whether or not the target has the atomic... This is to a certain extent an issue of 64bit atomics too, but 128-bit atomics are much less common. Regardless, the existing tests should be *more* than thorough enough here.
4. Minor changes like:
- grammar tweaks ("loads cannot have `Release` **and** `AcqRel` ordering" => "loads cannot have `Release` **or** `AcqRel` ordering")
- function renames (`match_ordering_def_path` => `matches_ordering_def_path`),
- avoiding clippy-specific helper methods that don't exist in rustc_lint and didn't seem worth adding for this case (for example `cx.struct_span_lint` vs clippy's `span_lint_and_help` helper).
## Potential issues
(This is just about the code in this PR, not conceptual issues with the lint or anything)
1. I'm not sure if I should have used a diagnostic item for `Ordering` and its variants (I couldn't figure out how really, so if I should do this some pointers would be appreciated).
- It seems possible that failing to do this might possibly mean there are more cases this lint would miss, but I don't really know how `match_def_path` works and if it has any pitfalls like that, so maybe not.
2. I *think* I deprecated the lint in clippy (CC `@flip1995` who asked to be notified about clippy changes in the future in [this comment](https://github.com/rust-lang/rust/pull/75671#issuecomment-718731659)) but I'm not sure if I need to do anything else there.
- I'm kind of hoping CI will catch if I missed anything, since `x.py test src/tools/clippy` fails with a lot of errors with and without my changes (and is probably a nonsense command regardless). Running `cargo test` from src/tools/clippy also fails with unrelated errors that seem like refactorings that didnt update clippy? So, honestly no clue.
3. I wasn't sure if the description/example I gave good. Hopefully it is. The example is less thorough than the one from clippy here: https://rust-lang.github.io/rust-clippy/master/index.html#invalid_atomic_ordering. Let me know if/how I should change it if it needs changing.
4. It pulls in the `if_chain` crate. This crate was already used in clippy, and seems like it's used elsewhere in rustc, but I'm willing to rewrite it to not use this if needed (I'd prefer not to, all things being equal).
- Deprecate clippy::invalid_atomic_ordering
- Use rustc_diagnostic_item for the orderings in the invalid_atomic_ordering lint
- Reduce code duplication
- Give up on making enum variants diagnostic items and just look for
`Ordering` instead
I ran into tons of trouble with this because apparently the change to
store HIR attrs in a side table also gave the DefIds of the
constructor instead of the variant itself. So I had to change
`matches_ordering` to also check the grandparent of the defid as well.
- Rename `atomic_ordering_x` symbols to just the name of the variant
- Fix typos in checks - there were a few places that said "may not be
Release" in the diagnostic but actually checked for SeqCst in the lint.
- Make constant items const
- Use fewer diagnostic items
- Only look at arguments after making sure the method matches
This prevents an ICE when there aren't enough arguments.
- Ignore trait methods
- Only check Ctors instead of going through `qpath_res`
The functions take values, so this couldn't ever be anything else.
- Add if_chain to allowed dependencies
- Fix grammar
- Remove unnecessary allow
Lint against named asm labels
This adds a deny-by-default lint to prevent the use of named labels in inline `asm!`. Without a solution to #81088 about whether the compiler should rewrite named labels or a special syntax for labels, a lint against them should prevent users from writing assembly that could break for internal compiler reasons, such as inlining or anything else that could change the number of actual inline assembly blocks emitted.
This does **not** resolve the issue with rewriting labels, that still needs a decision if the compiler should do any more work to try to make them work.
Try filtering out non-const impls when we expect const impls
**TL;DR**: Associated types on const impls are now bounded; we now disallow calling a const function with bounds when the specified type param only has a non-const impl.
r? `@oli-obk`
Associated functions that contain extern indicator or have `#[rustc_std_internal_symbol]` are reachable
Previously these fails to link with ``undefined reference to `foo'``:
<details>
<summary>Example 1</summary>
```rs
struct AssocFn;
impl AssocFn {
#[no_mangle]
fn foo() {}
}
fn main() {
extern "Rust" {
fn foo();
}
unsafe { foo() }
}
```
([Playground](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2018&gist=f1244afcdd26e2a28445f6e82ca46b50))
</details>
<details>
<summary>Example 2</summary>
```rs
#![crate_name = "lib"]
#![crate_type = "lib"]
struct AssocFn;
impl AssocFn {
#[no_mangle]
fn foo() {}
}
```
```rs
extern crate lib;
fn main() {
extern "Rust" {
fn foo();
}
unsafe { foo() }
}
```
</details>
But I believe they should link successfully, because this works:
<details>
```rs
#[no_mangle]
fn foo() {}
fn main() {
extern "Rust" {
fn foo();
}
unsafe { foo() }
}
```
([Playground](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2018&gist=789b3f283ee6126f53939429103ed98d))
</details>
This PR fixes the problem, by adding associated functions that have "custom linkage" to `reachable_set`, just like normal functions.
I haven't tested whether #76211 and [Miri](https://github.com/rust-lang/miri/issues/1837) are fixed by this PR yet, but I'm submitting this anyway since this fixes the examples above.
I added a `run-pass` test that combines my two examples above, but I'm not sure if that's the right way to test this. Maybe I should add / modify an existing codegen test (`src/test/codegen/export-no-mangle.rs`?) instead?
Silence non_fmt_panic from external macros.
This stops the non_fmt_panic lint from triggering if a macro from another crate is entirely responsible. In those cases there's nothing that the current crate can/should do.
See also https://github.com/rust-lang/rust/issues/87621#issuecomment-890311054
Allow labeled loops as value expressions for `break`
Fixes#86948. This is currently allowed:
```rust
return 'label: loop { break 'label 42; };
break ('label: loop { break 'label 42; });
break 1 + 'label: loop { break 'label 42; };
break 'outer 'inner: loop { break 'inner 42; };
```
But not this:
```rust
break 'label: loop { break 'label 42; };
```
I have fixed this, so that the above now parses as an unlabeled break with a labeled loop as its value expression.
rustc: Replace `HirId`s with `LocalDefId`s in `AccessLevels` tables
and passes using those tables - primarily privacy checking, stability checking and dead code checking.
All these passes work with definitions rather than with arbitrary HIR nodes.
r? `@cjgillot`
cc `@lambinoo` (#87487)
rfc3052 followup: Remove authors field from Cargo manifests
Since RFC 3052 soft deprecated the authors field, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information for contributors, we may as well
remove it from crates in this repo.
Since RFC 3052 soft deprecated the authors field anyway, hiding it from
crates.io, docs.rs, and making Cargo not add it by default, and it is
not generally up to date/useful information, we should remove it from
crates in this repo.
Store all HIR owners in the same container
This replaces the previous storage in a BTreeMap for each of Item/ImplItem/TraitItem/ForeignItem.
This should allow for a more compact storage.
Based on https://github.com/rust-lang/rust/pull/83114
Currently, we parse macros at the end of a block
(e.g. `fn foo() { my_macro!() }`) as expressions, rather than
statements. This means that a macro invoked in this position
cannot expand to items or semicolon-terminated expressions.
In the future, we might want to start parsing these kinds of macros
as statements. This would make expansion more 'token-based'
(i.e. macro expansion behaves (almost) as if you just textually
replaced the macro invocation with its output). However,
this is a breaking change (see PR #78991), so it will require
further discussion.
Since the current behavior will not be changing any time soon,
we need to address the interaction with the
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` lint. Since we are parsing
the result of macro expansion as an expression, we will emit a lint
if there's a trailing semicolon in the macro output. However, this
results in a somewhat confusing message for users, since it visually
looks like there should be no problem with having a semicolon
at the end of a block
(e.g. `fn foo() { my_macro!() }` => `fn foo() { produced_expr; }`)
To help reduce confusion, this commit adds a note explaining
that the macro is being interpreted as an expression. Additionally,
we suggest adding a semicolon after the macro *invocation* - this
will cause us to parse the macro call as a statement. We do *not*
use a structured suggestion for this, since the user may actually
want to remove the semicolon from the macro definition (allowing
the block to evaluate to the expression produced by the macro).
Warn on inert attributes used on bang macro invocation
These attributes are currently discarded.
This may change in the future (see #63221), but for now,
placing inert attributes on a macro invocation does nothing,
so we should warn users about it.
Technically, it's possible for there to be attribute macro
on the same macro invocation (or at a higher scope), which
inspects the inert attribute. For example:
```rust
#[look_for_inline_attr]
#[inline]
my_macro!()
#[look_for_nested_inline]
mod foo { #[inline] my_macro!() }
```
However, this would be a very strange thing to do.
Anyone running into this can manually suppress the warning.
These attributes are currently discarded.
This may change in the future (see #63221), but for now,
placing inert attributes on a macro invocation does nothing,
so we should warn users about it.
Technically, it's possible for there to be attribute macro
on the same macro invocation (or at a higher scope), which
inspects the inert attribute. For example:
```rust
#[look_for_inline_attr]
#[inline]
my_macro!()
#[look_for_nested_inline]
mod foo { #[inline] my_macro!() }
```
However, this would be a very strange thing to do.
Anyone running into this can manually suppress the warning.
Make `--force-warns` a normal lint level option
Now that `ForceWarn` is a lint level, there's no reason `--force-warns` should be treated differently from other options that set lint levels. This merges the `ForceWarn` handling in with the other lint level command line options. It also unifies all of the relevant selection logic in `compiler/rustc_lint/src/levels.rs`, rather than having some of it weirdly elsewhere.
Fixes#86958, which arose from the special-cased handling of `ForceWarn` having had an error in it.
Compute a better `lint_node_id` during expansion
When we need to emit a lint at a macro invocation, we currently use the
`NodeId` of its parent definition (e.g. the enclosing function). This
means that any `#[allow]` / `#[deny]` attributes placed 'closer' to the
macro (e.g. on an enclosing block or statement) will have no effect.
This commit computes a better `lint_node_id` in `InvocationCollector`.
When we visit/flat_map an AST node, we assign it a `NodeId` (earlier
than we normally would), and store than `NodeId` in current
`ExpansionData`. When we collect a macro invocation, the current
`lint_node_id` gets cloned along with our `ExpansionData`, allowing it
to be used if we need to emit a lint later on.
This improves the handling of `#[allow]` / `#[deny]` for
`SEMICOLON_IN_EXPRESSIONS_FROM_MACROS` and some `asm!`-related lints.
The 'legacy derive helpers' lint retains its current behavior
(I've inlined the now-removed `lint_node_id` function), since
there isn't an `ExpansionData` readily available.
Based on the conversation in #86747.
Explanation
-----------
A trait object bound of the form `dyn Drop` is most likely misleading
and not what the programmer intended.
`Drop` bounds do not actually indicate whether a type can be trivially
dropped or not, because a composite type containing `Drop` types does
not necessarily implement `Drop` itself. Naïvely, one might be tempted
to write a deferred drop system, to pull cleaning up memory out of a
latency-sensitive code path, using `dyn Drop` trait objects. However,
this breaks down e.g. when `T` is `String`, which does not implement
`Drop`, but should probably be accepted.
To write a trait object bound that accepts anything, use a placeholder
trait with a blanket implementation.
```rust
trait Placeholder {}
impl<T> Placeholder for T {}
fn foo(_x: Box<dyn Placeholder>) {}
```
Fix internal `default_hash_types` lint to use resolved path
I run into false positives now and then (mostly in Clippy) when I want to name some util after HashMap.
Remove `missing_docs` lint on private 2.0 macros
798baebde1/compiler/rustc_lint/src/builtin.rs (L573-L584)
This code is the source of #57569. The problem is subtle, so let me point it out. This code makes the mistake of assuming that all of the macros in `krate.exported_macros` are exported.
...Yeah. For some historical reason, all `macro` macros are marked as exported, regardless of whether they actually are, which is dreadfully confusing. It would be more accurate to say that `exported_macros` currently contains only macros that have paths.
This PR renames `exported_macros` to `importable_macros`, since these macros can be imported with `use` while others cannot. It also fixes the code above to no longer lint on private `macro` macros, since the `missing_docs` lint should only appear on exported items.
Fixes#57569.
Support lint tool names in rustc command line options
When rustc is running without a lint tool such as clippy enabled, options for lints such as `clippy::foo` are meant to be ignored. This was already working for those specified by attrs, such as `#![allow(clippy::foo)]`, but this did not work for command line arguments like `-A clippy::foo`. This PR fixes that issue.
Note that we discovered this issue while discussing https://github.com/rust-lang/cargo/issues/5034.
Fixes#86628.
This change merges `check_lint_and_tool_name` into `check_lint_name` in
order to avoid having two very similar functions.
Also adds the `.stderr` file back for the test case, since apparently
it is still needed.
Only include lint in future_incompatible lint group if not an edition lint
A follow up to #86330 - this only includes lints annotated with `FutureIncompatibleInfo` in the `future_incompatibile` lint group if the future compatibility is not tied to an edition.
We probably want to rename `FutureIncompatibleInfo` to something else since this type is now used to indicate future breakages of all kinds (even those that happen in editions). I'd prefer to do that in a separate PR though.
r? `@nikomatsakis`
Don't make `rustc_insignificant_dtor` feature gate
This isn't a feature gate, it's an attribute that is feature gated behind the `rustc_attrs` attribute. Closes#85680.
Turn non_fmt_panic into a future_incompatible edition lint.
This turns the `non_fmt_panic` lint into a future_incompatible edition lint, so it becomes part of the `rust_2021_compatibility` group. See https://github.com/rust-lang/rust/issues/85894.
This lint produces both warnings about semantical changes (e.g. `panic!("{{")`) and things that will become hard errors (e.g. `panic!("{")`). So I added a `explain_reason: false` that supresses the default "this will become a hard error" or "the semantics will change" message, and instead added a note depending on the situation. (cc `@rylev)`
r? `@nikomatsakis`
This prevents mistakes where the feature is in the list of incomplete
features but not actually a feature by making the incompleteness a part
of the declaration.
Reserve prefixed identifiers and literals (RFC 3101)
This PR denies any identifiers immediately followed by one of three tokens `"`, `'` or `#`, which is stricter than the requirements of RFC 3101 but may be necessary according to the discussion at [Zulip].
[Zulip]: https://rust-lang.zulipchat.com/#narrow/stream/268952-edition-2021/topic/reserved.20prefixes/near/238470099
The tracking issue #84599 says we'll add a feature gate named `reserved_prefixes`, but I don't think I can do this because it is impossible for the lexer to know whether a feature is enabled or not. I guess determining the behavior by the edition information should be enough.
Fixes#84599
Remove `doc(include)`
This nightly feature is redundant now that `extended_key_value_attributes` is stable (https://github.com/rust-lang/rust/pull/83366). `@rust-lang/rustdoc` not sure if you think this needs FCP; there was already an FCP in #82539, but technically it was for deprecating, not removing the feature altogether.
This should not be merged before #83366.
cc `@petrochenkov`
Support for force-warns
Implements https://github.com/rust-lang/rust/issues/85512.
This PR adds a new command line option `force-warns` which will force the provided lints to warn even if they are allowed by some other mechanism such as `#![allow(warnings)]`.
Some remaining issues:
* https://github.com/rust-lang/rust/issues/85512 mentions that `force-warns` should also be capable of taking lint groups instead of individual lints. This is not implemented.
* If a lint has a higher warning level than `warn`, this will cause that lint to warn instead. We probably want to allow the lint to error if it is set to a higher lint and is not allowed somewhere else.
* One test is currently ignored because it's not working - when a deny-by-default lint is allowed, it does not currently warn under `force-warns`. I'm not sure why, but I wanted to get this in before the weekend.
r? `@nikomatsakis`
Remove unused feature gates
The first commit removes a usage of a feature gate, but I don't expect it to be controversial as the feature gate was only used to workaround a limitation of rust in the past. (closures never being `Clone`)
The second commit uses `#[allow_internal_unstable]` to avoid leaking the `trusted_step` feature gate usage from inside the index newtype macro. It didn't work for the `min_specialization` feature gate though.
The third commit removes (almost) all feature gates from the compiler that weren't used anyway.
Use pattern matching instead of checking lengths explicitly
This piece of code checks that there are exaclty two variants, one having
exactly one field, the other having exactly zero fields. If any of these
conditions is violated, it returns `None`. Otherwise it assigns that one
field's ty to `field_ty`.
Instead of fiddling with indices and length checks explicitly, use pattern
matching to simplify this.
`@rustbot` modify labels +C-cleanup +T-compiler
This piece of code checks that there are exaclty two variants, one having
exactly one field, the other having exactly zero fields. If any of these
conditions is violated, it returns `None`. Otherwise it assigns that one
field's ty to `field_ty`.
Instead of fiddling with indices and length checks explicitly, use pattern
matching to simplify this.
Remove CrateNum parameter for queries that only work on local crate
The pervasive `CrateNum` parameter is a remnant of the multi-crate rustc idea.
Using `()` as query key in those cases avoids having to worry about the validity of the query key.
This PR implements span quoting, allowing proc-macros to produce spans
pointing *into their own crate*. This is used by the unstable
`proc_macro::quote!` macro, allowing us to get error messages like this:
```
error[E0412]: cannot find type `MissingType` in this scope
--> $DIR/auxiliary/span-from-proc-macro.rs:37:20
|
LL | pub fn error_from_attribute(_args: TokenStream, _input: TokenStream) -> TokenStream {
| ----------------------------------------------------------------------------------- in this expansion of procedural macro `#[error_from_attribute]`
...
LL | field: MissingType
| ^^^^^^^^^^^ not found in this scope
|
::: $DIR/span-from-proc-macro.rs:8:1
|
LL | #[error_from_attribute]
| ----------------------- in this macro invocation
```
Here, `MissingType` occurs inside the implementation of the proc-macro
`#[error_from_attribute]`. Previosuly, this would always result in a
span pointing at `#[error_from_attribute]`
This will make many proc-macro-related error message much more useful -
when a proc-macro generates code containing an error, users will get an
error message pointing directly at that code (within the macro
definition), instead of always getting a span pointing at the macro
invocation site.
This is implemented as follows:
* When a proc-macro crate is being *compiled*, it causes the `quote!`
macro to get run. This saves all of the sapns in the input to `quote!`
into the metadata of *the proc-macro-crate* (which we are currently
compiling). The `quote!` macro then expands to a call to
`proc_macro::Span::recover_proc_macro_span(id)`, where `id` is an
opaque identifier for the span in the crate metadata.
* When the same proc-macro crate is *run* (e.g. it is loaded from disk
and invoked by some consumer crate), the call to
`proc_macro::Span::recover_proc_macro_span` causes us to load the span
from the proc-macro crate's metadata. The proc-macro then produces a
`TokenStream` containing a `Span` pointing into the proc-macro crate
itself.
The recursive nature of 'quote!' can be difficult to understand at
first. The file `src/test/ui/proc-macro/quote-debug.stdout` shows
the output of the `quote!` macro, which should make this eaier to
understand.
This PR also supports custom quoting spans in custom quote macros (e.g.
the `quote` crate). All span quoting goes through the
`proc_macro::quote_span` method, which can be called by a custom quote
macro to perform span quoting. An example of this usage is provided in
`src/test/ui/proc-macro/auxiliary/custom-quote.rs`
Custom quoting currently has a few limitations:
In order to quote a span, we need to generate a call to
`proc_macro::Span::recover_proc_macro_span`. However, proc-macros
support renaming the `proc_macro` crate, so we can't simply hardcode
this path. Previously, the `quote_span` method used the path
`crate::Span` - however, this only works when it is called by the
builtin `quote!` macro in the same crate. To support being called from
arbitrary crates, we need access to the name of the `proc_macro` crate
to generate a path. This PR adds an additional argument to `quote_span`
to specify the name of the `proc_macro` crate. Howver, this feels kind
of hacky, and we may want to change this before stabilizing anything
quote-related.
Additionally, using `quote_span` currently requires enabling the
`proc_macro_internals` feature. The builtin `quote!` macro
has an `#[allow_internal_unstable]` attribute, but this won't work for
custom quote implementations. This will likely require some additional
tricks to apply `allow_internal_unstable` to the span of
`proc_macro::Span::recover_proc_macro_span`.
Update BARE_TRAIT_OBJECT and ELLIPSIS_INCLUSIVE_RANGE_PATTERNS to errors in Rust 2021
This addresses https://github.com/rust-lang/rust/pull/81244 by updating two lints to errors in the Rust 2021 edition.
r? `@estebank`
Stablize `non-ascii-idents`
This is the stablization PR for RFC 2457. Currently this is waiting on fcp in [tracking issue](https://github.com/rust-lang/rust/issues/55467).
r? `@Manishearth`
add lint deref_nullptr detecting when a null ptr is dereferenced
fixes#83856
changelog: add lint that detect code like
```rust
unsafe {
&*core::ptr::null::<i32>()
};
unsafe {
addr_of!(std::ptr::null::<i32>())
};
let x: i32 = unsafe {*core::ptr::null()};
let x: i32 = unsafe {*core::ptr::null_mut()};
unsafe {*(0 as *const i32)};
unsafe {*(core::ptr::null() as *const i32)};
```
```
warning: Dereferencing a null pointer causes undefined behavior
--> src\main.rs:5:26
|
5 | let x: i32 = unsafe {*core::ptr::null()};
| ^^^^^^^^^^^^^^^^^^
| |
| a null pointer is dereferenced
| this code causes undefined behavior when executed
|
= note: `#[warn(deref_nullptr)]` on by default
```
Limitation:
It does not detect code like
```rust
const ZERO: usize = 0;
unsafe {*(ZERO as *const i32)};
```
or code where `0` is not directly a literal
Found with https://github.com/est31/warnalyzer.
Dubious changes:
- Is anyone else using rustc_apfloat? I feel weird completely deleting
x87 support.
- Maybe some of the dead code in rustc_data_structures, in case someone
wants to use it in the future?
- Don't change rustc_serialize
I plan to scrap most of the json module in the near future (see
https://github.com/rust-lang/compiler-team/issues/418) and fixing the
tests needed more work than I expected.
TODO: check if any of the comments on the deleted code should be kept.
Add function core::iter::zip
This makes it a little easier to `zip` iterators:
```rust
for (x, y) in zip(xs, ys) {}
// vs.
for (x, y) in xs.into_iter().zip(ys) {}
```
You can `zip(&mut xs, &ys)` for the conventional `iter_mut()` and
`iter()`, respectively. This can also support arbitrary nesting, where
it's easier to see the item layout than with arbitrary `zip` chains:
```rust
for ((x, y), z) in zip(zip(xs, ys), zs) {}
for (x, (y, z)) in zip(xs, zip(ys, zs)) {}
// vs.
for ((x, y), z) in xs.into_iter().zip(ys).zip(xz) {}
for (x, (y, z)) in xs.into_iter().zip((ys.into_iter().zip(xz)) {}
```
It may also format more nicely, especially when the first iterator is a
longer chain of methods -- for example:
```rust
iter::zip(
trait_ref.substs.types().skip(1),
impl_trait_ref.substs.types().skip(1),
)
// vs.
trait_ref
.substs
.types()
.skip(1)
.zip(impl_trait_ref.substs.types().skip(1))
```
This replaces the tuple-pair `IntoIterator` in #78204.
There is prior art for the utility of this in [`itertools::zip`].
[`itertools::zip`]: https://docs.rs/itertools/0.10.0/itertools/fn.zip.html
Allow registering tool lints with `register_tool`
Previously, there was no way to add a custom tool prefix, even if the tool
itself had registered a lint:
```rust
#![feature(register_tool)]
#![register_tool(xyz)]
#![warn(xyz::my_lint)]
```
```
$ rustc unknown-lint.rs --crate-type lib
error[E0710]: an unknown tool name found in scoped lint: `xyz::my_lint`
--> unknown-lint.rs:3:9
|
3 | #![warn(xyz::my_lint)]
| ^^^
```
This allows opting-in to lints from other tools using `register_tool`.
cc https://github.com/rust-lang/rust/issues/66079#issuecomment-788589193, ``@chorman0773``
r? ``@petrochenkov``
ast/hir: Rename field-related structures
I always forget what `ast::Field` and `ast::StructField` mean despite working with AST for long time, so this PR changes the naming to less confusing and more consistent.
- `StructField` -> `FieldDef` ("field definition")
- `Field` -> `ExprField` ("expression field", not "field expression")
- `FieldPat` -> `PatField` ("pattern field", not "field pattern")
Various visiting and other methods working with the fields are renamed correspondingly too.
The second commit reduces the size of `ExprKind` by boxing fields of `ExprKind::Struct` in preparation for https://github.com/rust-lang/rust/pull/80080.
Previously, there was no way to add a custom tool prefix, even if the tool
itself had registered a lint:
```
#![feature(register_tool)]
#![register_tool(xyz)]
#![warn(xyz::my_lint)]
```
```
$ rustc unknown-lint.rs --crate-type lib
error[E0710]: an unknown tool name found in scoped lint: `xyz::my_lint`
--> unknown-lint.rs:3:9
|
3 | #![warn(xyz::my_lint)]
| ^^^
```
This allows opting-in to lints from other tools using `register_tool`.
Right now, rustdoc users have an unpleasant situation: they can either
use the new tool lint names (`rustdoc::non_autolinks`) or they can use
the old names (`non_autolinks`). If they use the tool lints, they get a
hard error on stable compilers, because rustc rejects all tool names it
doesn't recognize. If they use the old name, they get a warning to
rename the lint to the new name. The only way to compile without
warnings is to add `#[allow(renamed_removed_lints)]`, which defeats the
whole point of the change: we *want* people to switch to the new name.
To avoid people silencing the lint and never migrating to the tool lint,
this avoids warning about the old name, while still allowing you to use
the new name. Once the new `rustdoc` tool name makes it to the stable
channel, we can change these lints to warn again.
This adds the new lint functions `register_alias` and `register_ignored`
- I didn't see an existing way to do this.
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
Now that future-incompat-report support has landed in nightly Cargo, we
can start to make progress towards removing the various proc-macro
back-compat hacks that have accumulated in the compiler.
This PR introduces a new lint `proc_macro_back_compat`, which results in
a future-incompat-report entry being generated. All proc-macro
back-compat warnings will be grouped under this lint. Note that this
lint will never actually become a hard error - instead, we will remove
the special cases for various macros, which will cause older versions of
those crates to emit some other error.
I've added code to fire this lint for the `time-macros-impl` case. This
is the easiest case out of all of our current back-compat hacks - the
crate was renamed to `time-macros`, so seeing a filename with
`time-macros-impl` guarantees that an older version of the parent `time`
crate is in use.
When Cargo's future-incompat-report feature gets stabilized, affected
users will start to see future-incompat warnings when they build their
crates.
Rename `rustdoc` to `rustdoc::all`
When rustdoc lints were changed to be tool lints, the `rustdoc` group was removed, leading to spurious warnings like
```
warning: unknown lint: `rustdoc`
```
The lint group still worked when rustdoc ran, since rustdoc added the group itself.
This renames the group to `rustdoc::all` for consistency with `clippy::all` and the rest of the rustdoc lints.
Follow-up to #80527.
r? ``@Manishearth``
or-patterns: disallow in `let` bindings
~~Blocked on https://github.com/rust-lang/rust/pull/81869~~
Disallows top-level or-patterns before type ascription. We want to reserve this syntactic space for possible future generalized type ascription.
r? ``@petrochenkov``
When rustdoc lints were changed to be tool lints, the `rustdoc` group
was removed, leading to spurious warnings like
```
warning: unknown lint: `rustdoc`
```
The lint group still worked when rustdoc ran, since rustdoc added the group itself.
This renames the group to `rustdoc::all` for consistency with
`clippy::all` and the rest of the rustdoc lints.
Implement NOOP_METHOD_CALL lint
Implements the beginnings of https://github.com/rust-lang/lang-team/issues/67 - a lint for detecting noop method calls (e.g, calling `<&T as Clone>::clone()` when `T: !Clone`).
This PR does not fully realize the vision and has a few limitations that need to be addressed either before merging or in subsequent PRs:
* [ ] No UFCS support
* [ ] The warning message is pretty plain
* [ ] Doesn't work for `ToOwned`
The implementation uses [`Instance::resolve`](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_middle/ty/instance/struct.Instance.html#method.resolve) which is normally later in the compiler. It seems that there are some invariants that this function relies on that we try our best to respect. For instance, it expects substitutions to have happened, which haven't yet performed, but we check first for `needs_subst` to ensure we're dealing with a monomorphic type.
Thank you to ```@davidtwco,``` ```@Aaron1011,``` and ```@wesleywiser``` for helping me at various points through out this PR ❤️.