This increases regionck performance greatly - type-checking on
librustc decreased from 9.1s to 8.1s. Because of Amdahl's law,
total performance is improved only by about 1.5% (LLVM wizards,
this is your opportunity to shine!).
before:
576.91user 4.26system 7:42.36elapsed 125%CPU (0avgtext+0avgdata 1142192maxresident)k
after:
566.50user 4.84system 7:36.84elapsed 125%CPU (0avgtext+0avgdata 1124304maxresident)k
I am somewhat worried really need to find out why we have this Red Queen's
Race going on here. Originally I suspected it may be a problem from RFC1214's
warnings, but it seems to be an effect from other changes.
However, the increase seems to be mostly in LLVM's time, so I guess
it's the LLVM wizards' problem.
This is purposely separate to the "rust-intrinsic" ABI, because these
intrinsics are theoretically going to become stable, and should be fine
to be independent of the compiler/language internals since they're
intimately to the platform.
Just a little code cleanup I was doing as part of another refactoring (which may turn out not to be needed). The main thrust of this is to cleanup the interface to `tydecode.rs` to be less ridiculously repetitive. I also purged the generic "def-id conversion" parameter in favor of a trait object, just to reduce code duplication a bit and make the signatures a bit less messy. I measured the bootstrapping time to build stage2 with these changes, it was identical. (But it'd be easy enough to restore the unboxed closure if we wanted it.)
This commit is an implementation of [RFC 1183][rfc] which allows swapping out
the default allocator on nightly Rust. No new stable surface area should be
added as a part of this commit.
[rfc]: https://github.com/rust-lang/rfcs/pull/1183
Two new attributes have been added to the compiler:
* `#![needs_allocator]` - this is used by liballoc (and likely only liballoc) to
indicate that it requires an allocator crate to be in scope.
* `#![allocator]` - this is a indicator that the crate is an allocator which can
satisfy the `needs_allocator` attribute above.
The ABI of the allocator crate is defined to be a set of symbols that implement
the standard Rust allocation/deallocation functions. The symbols are not
currently checked for exhaustiveness or typechecked. There are also a number of
restrictions on these crates:
* An allocator crate cannot transitively depend on a crate that is flagged as
needing an allocator (e.g. allocator crates can't depend on liballoc).
* There can only be one explicitly linked allocator in a final image.
* If no allocator is explicitly requested one will be injected on behalf of the
compiler. Binaries and Rust dylibs will use jemalloc by default where
available and staticlibs/other dylibs will use the system allocator by
default.
Two allocators are provided by the distribution by default, `alloc_system` and
`alloc_jemalloc` which operate as advertised.
Closes#27389
This commit stabilizes the `std::time` module and the `Duration` type.
`Duration::span` remains unstable, and the `Display` implementation for
`Duration` has been removed as it is still being reworked and all trait
implementations for stable types are de facto stable.
This is a [breaking-change] to those using `Duration`'s `Display`
implementation.
I'm opening this PR as a platform for discussion - there may be some method renaming to do as part of the stabilization process.
Rust's current compilation model makes it impossible on Windows to generate one
object file with a complete and final set of dllexport annotations. This is
because when an object is generated the compiler doesn't actually know if it
will later be included in a dynamic library or not. The compiler works around
this today by flagging *everything* as dllexport, but this has the drawback of
exposing too much.
Thankfully there are alternate methods of specifying the exported surface area
of a dll on Windows, one of which is passing a `*.def` file to the linker which
lists all public symbols of the dynamic library. This commit removes all
locations that add `dllexport` to LLVM variables and instead dynamically
generates a `*.def` file which is passed to the linker. This file will include
all the public symbols of the current object file as well as all upstream
libraries, and the crucial aspect is that it's only used when generating a
dynamic library. When generating an executable this file isn't generated, so all
the symbols aren't exported from an executable.
To ensure that statically included native libraries are reexported correctly,
the previously added support for the `#[linked_from]` attribute is used to
determine the set of FFI symbols that are exported from a dynamic library, and
this is required to get the compiler to link correctly.
To correctly reexport statically included libraries from a DLL on Windows, the
compiler will soon need to have knowledge about what symbols are statically
included and which are not. To solve this problem a new unstable
`#[linked_from]` attribute is being added and recognized on `extern` blocks to
indicate which native library the symbols are coming from.
The compiler then keeps track of what the set of FFI symbols are that are
included statically. This information will be used in a future commit to
configure how we invoke the linker on Windows.
This commit stabilizes the `std::time` module and the `Duration` type.
`Duration::span` remains unstable, and the `Display` implementation for
`Duration` has been removed as it is still being reworked and all trait
implementations for stable types are de facto stable.
This is a [breaking-change] to those using `Duration`'s `Display`
implementation.
This ended up being a bigger refactoring than I thought, as I also cleaned a few ugly points in rustc. There are still a few areas that need improvements.
Performance numbers:
```
Before:
572.70user 5.52system 7:33.21elapsed 127%CPU (0avgtext+0avgdata 1173368maxresident)k
llvm-time: 385.858
After:
545.27user 5.49system 7:10.22elapsed 128%CPU (0avgtext+0avgdata 1145348maxresident)k
llvm-time: 387.119
```
A good 5% perf improvement. Note that after this patch >70% of the time is spent in LLVM - Amdahl's law is in full effect.
Passes make check locally.
r? @nikomatsakis
This search happens a lot! Locally, compiling hyper sees the following improvements:
before
real 0m30.843s
user 0m51.644s
sys 0m2.128s
real 0m30.164s
user 0m53.320s
sys 0m2.208s
after
real 0m28.438s
user 0m51.076s
sys 0m2.276s
real 0m28.612s
user 0m51.560s
sys 0m2.192s
This changes the current behaviour for two cases (that I know of)
```rust
mod foo {
extern crate bar;
}
// `bar::` changes to `foo::bar::`
```
```rust
extern crate bar as quux;
// `bar::` changes to `quux::`
```
For example:
```rust
mod foo {
extern crate core;
}
fn assert_clone<T>() where T : Clone { }
fn main() {
assert_clone::<foo::core::atomic::AtomicBool>();
// error: the trait `core::clone::Clone` is not implemented for the type `core::atomic::AtomicBool` [E0277]
// changes to
// error: the trait `foo::core::clone::Clone` is not implemented for the type `foo::core::atomic::AtomicBool` [E0277]
}
```
Notably the following test case broke:
```rust
#[bench]
fn bar(x: isize) { }
//~^ ERROR mismatched types
//~| expected `fn(&mut test::Bencher)`
// changed to
//~| expected `fn(&mut __test::test::Bencher)`
```
If a crate is linked multiple times the path with the least segments is stored.
Partially addresses #1920. (this doesn't solve the issue raised about re-exports)
r? @nikomatsakis
Many of these have long since reached their stage of being obsolete, so this
commit starts the removal process for all of them. The unstable features that
were deprecated are:
* cmp_partial
* fs_time
* hash_default
* int_slice
* iter_min_max
* iter_reset_fuse
* iter_to_vec
* map_in_place
* move_from
* owned_ascii_ext
* page_size
* read_and_zero
* scan_state
* slice_chars
* slice_position_elem
* subslice_offset
TyClosure variant; thread this through wherever closure substitutions
are expected, which leads to a net simplification. Simplify trans
treatment of closures in particular.
This PR modernizes some names in the type checker. The only remaining snake_case name in ty.rs is `ctxt` which should be resolved by @eddyb's pending refactor. We can bike shed over the names, it would just be nice to bring the type checker inline with modern Rust.
r? @eddyb
cc @nikomatsakis
We have previously always relied upon an external tool, `ar`, to modify archives
that the compiler produces (staticlibs, rlibs, etc). This approach, however, has
a number of downsides:
* Spawning a process is relatively expensive for small compilations
* Encoding arguments across process boundaries often incurs unnecessary overhead
or lossiness. For example `ar` has a tough time dealing with files that have
the same name in archives, and the compiler copies many files around to ensure
they can be passed to `ar` in a reasonable fashion.
* Most `ar` programs found do **not** have the ability to target arbitrary
platforms, so this is an extra tool which needs to be found/specified when
cross compiling.
The LLVM project has had a tool called `llvm-ar` for quite some time now, but it
wasn't available in the standard LLVM libraries (it was just a standalone
program). Recently, however, in LLVM 3.7, this functionality has been moved to a
library and is now accessible by consumers of LLVM via the `writeArchive`
function.
This commit migrates our archive bindings to no longer invoke `ar` by default
but instead make a library call to LLVM to do various operations. This solves
all of the downsides listed above:
* Archive management is now much faster, for example creating a "hello world"
staticlib is now 6x faster (50ms => 8ms). Linking dynamic libraries also
recently started requiring modification of rlibs, and linking a hello world
dynamic library is now 2x faster.
* The compiler is now one step closer to "hassle free" cross compilation because
no external tool is needed for managing archives, LLVM does the right thing!
This commit does not remove support for calling a system `ar` utility currently.
We will continue to maintain compatibility with LLVM 3.5 and 3.6 looking forward
(so the system LLVM can be used wherever possible), and in these cases we must
shell out to a system utility. All nightly builds of Rust, however, will stop
needing a system `ar`.
This commit starts passing the `--whole-archive` flag (`-force_load` on OSX) to
the linker when linking rlibs into dylibs. The primary purpose of this commit is
to ensure that the linker doesn't strip out objects from an archive when
creating a dynamic library. Information on how this can go wrong can be found in
issues #14344 and #25185.
The unfortunate part about passing this flag to the linker is that we have to
preprocess the rlib to remove the metadata and compressed bytecode found within.
This means that creating a dylib will now take longer to link as we've got to
copy around the input rlibs to a temporary location, modify them, and then
invoke the linker. This isn't done for executables, however, so the "hello
world" compile time is not affected.
This fix was instigated because of the previous commit where rlibs may not
contain multiple object files instead of one due to codegen units being greater
than one. That change prevented the main distribution from being compiled with
more than one codegen-unit and this commit fixes that.
Closes#14344Closes#25185
region-bound is expected to change in Rust 1.3, but don't use it for
anything in this commit. Note that this is not a "significant" part of
the type (it's not part of the formal model) so we have to normalize
this away or trans starts to get confused because two equal types wind
up with distinct LLVM types.
This is a port of @eddyb's `const-fn` branch. I rebased it, tweaked a few things, and added tests as well as a feature gate. The set of tests is still pretty rudimentary, I'd appreciate suggestions on new tests to write. Also, a double-check that the feature-gate covers all necessary cases.
One question: currently, the feature-gate allows the *use* of const functions from stable code, just not the definition. This seems to fit our usual strategy, and implies that we might (perhaps) allow some constant functions in libstd someday, even before stabilizing const-fn, if we were willing to commit to the existence of const fns but found some details of their impl unsatisfactory.
r? @pnkfelix
- add feature gate
- add basic tests
- adjust parser to eliminate conflict between `const fn` and associated
constants
- allow `const fn` in traits/trait-impls, but forbid later in type check
- correct some merge conflicts
Special thanks to @retep998 for the [excellent writeup](https://github.com/rust-lang/rfcs/issues/1061) of tasks to be done and @ricky26 for initially blazing the trail here!
# MSVC Support
This goal of this series of commits is to add MSVC support to the Rust compiler
and build system, allowing it more easily interoperate with Visual Studio
installations and native libraries compiled outside of MinGW.
The tl;dr; of this change is that there is a new target of the compiler,
`x86_64-pc-windows-msvc`, which will not interact with the MinGW toolchain at
all and will instead use `link.exe` to assemble output artifacts.
## Why try to use MSVC?
With today's Rust distribution, when you install a compiler on Windows you also
install `gcc.exe` and a number of supporting libraries by default (this can be
opted out of). This allows installations to remain independent of MinGW
installations, but it still generally requires native code to be linked with
MinGW instead of MSVC. Some more background can also be found in #1768 about the
incompatibilities between MinGW and MSVC.
Overall the current installation strategy is quite nice so long as you don't
interact with native code, but once you do the usage of a MinGW-based `gcc.exe`
starts to get quite painful.
Relying on a nonstandard Windows toolchain has also been a long-standing "code
smell" of Rust and has been slated for remedy for quite some time now. Using a
standard toolchain is a great motivational factor for improving the
interoperability of Rust code with the native system.
## What does it mean to use MSVC?
"Using MSVC" can be a bit of a nebulous concept, but this PR defines it as:
* The build system for Rust will build as much code as possible with the MSVC
compiler, `cl.exe`.
* The build system will use native MSVC tools for managing archives.
* The compiler will link all output with `link.exe` instead of `gcc.exe`.
None of these are currently implemented today, but all are required for the
compiler to fluently interoperate with MSVC.
## How does this all work?
At the highest level, this PR adds a new target triple to the Rust compiler:
x86_64-pc-windows-msvc
All logic for using MSVC or not is scoped within this triple and code can
conditionally build for MSVC or MinGW via:
#[cfg(target_env = "msvc")]
It is expected that auto builders will be set up for MSVC-based compiles in
addition to the existing MinGW-based compiles, and we will likely soon start
shipping MSVC nightlies where `x86_64-pc-windows-msvc` is the host target triple
of the compiler.
# Summary of changes
Here I'll explain at a high level what many of the changes made were targeted
at, but many more details can be found in the commits themselves. Many thanks to
@retep998 for the excellent writeup in rust-lang/rfcs#1061 and @rick26 for a lot
of the initial proof-of-concept work!
## Build system changes
As is probably expected, a large chunk of this PR is changes to Rust's build
system to build with MSVC. At a high level **it is an explicit non goal** to
enable building outside of a MinGW shell, instead all Makefile infrastructure we
have today is retrofitted with support to use MSVC instead of the standard MSVC
toolchain. Some of the high-level changes are:
* The configure script now detects when MSVC is being targeted and adds a number
of additional requirements about the build environment:
* The `--msvc-root` option must be specified or `cl.exe` must be in PATH to
discover where MSVC is installed. The compiler in use is also required to
target x86_64.
* Once the MSVC root is known, the INCLUDE/LIB environment variables are
scraped so they can be reexported by the build system.
* CMake is required to build LLVM with MSVC (and LLVM is also configured with
CMake instead of the normal configure script).
* jemalloc is currently unconditionally disabled for MSVC targets as jemalloc
isn't a hard requirement and I don't know how to build it with MSVC.
* Invocations of a C and/or C++ compiler are now abstracted behind macros to
appropriately call the underlying compiler with the correct format of
arguments, for example there is now a macro for "assemble an archive from
objects" instead of hard-coded invocations of `$(AR) crus liboutput.a ...`
* The output filenames for standard libraries such as morestack/compiler-rt are
now "more correct" on windows as they are shipped as `foo.lib` instead of
`libfoo.a`.
* Rust targets can now depend on native tools provided by LLVM, and as you'll
see in the commits the entire MSVC target depends on `llvm-ar.exe`.
* Support for custom arbitrary makefile dependencies of Rust targets has been
added. The MSVC target for `rustc_llvm` currently requires a custom `.DEF`
file to be passed to the linker to get further linkages to complete.
## Compiler changes
The modifications made to the compiler have so far largely been minor tweaks
here and there, mostly just adding a layer of abstraction over whether MSVC or a
GNU-like linker is being used. At a high-level these changes are:
* The section name for metadata storage in dynamic libraries is called `.rustc`
for MSVC-based platorms as section names cannot contain more than 8
characters.
* The implementation of `rustc_back::Archive` was refactored, but the
functionality has remained the same.
* Targets can now specify the default `ar` utility to use, and for MSVC this
defaults to `llvm-ar.exe`
* The building of the linker command in `rustc_trans:🔙:link` has been
abstracted behind a trait for the same code path to be used between GNU and
MSVC linkers.
## Standard library changes
Only a few small changes were required to the stadnard library itself, and only
for minor differences between the C runtime of msvcrt.dll and MinGW's libc.a
* Some function names for floating point functions have leading underscores, and
some are not present at all.
* Linkage to the `advapi32` library for crypto-related functions is now
explicit.
* Some small bits of C code here and there were fixed for compatibility with
MSVC's cl.exe compiler.
# Future Work
This commit is not yet a 100% complete port to using MSVC as there are still
some key components missing as well as some unimplemented optimizations. This PR
is already getting large enough that I wanted to draw the line here, but here's
a list of what is not implemented in this PR, on purpose:
## Unwinding
The revision of our LLVM submodule [does not seem to implement][llvm] does not
support lowering SEH exception handling on the Windows MSVC targets, so
unwinding support is not currently implemented for the standard library (it's
lowered to an abort).
[llvm]: https://github.com/rust-lang/llvm/blob/rust-llvm-2015-02-19/lib/CodeGen/Passes.cpp#L454-L461
It looks like, however, that upstream LLVM has quite a bit more support for SEH
unwinding and landing pads than the current revision we have, so adding support
will likely just involve updating LLVM and then adding some shims of our own
here and there.
## dllimport and dllexport
An interesting part of Windows which MSVC forces our hand on (and apparently
MinGW didn't) is the usage of `dllimport` and `dllexport` attributes in LLVM IR
as well as native dependencies (in C these correspond to
`__declspec(dllimport)`).
Whenever a dynamic library is built by MSVC it must have its public interface
specified by functions tagged with `dllexport` or otherwise they're not
available to be linked against. This poses a few problems for the compiler, some
of which are somewhat fundamental, but this commit alters the compiler to attach
the `dllexport` attribute to all LLVM functions that are reachable (e.g. they're
already tagged with external linkage). This is suboptimal for a few reasons:
* If an object file will never be included in a dynamic library, there's no need
to attach the dllexport attribute. Most object files in Rust are not destined
to become part of a dll as binaries are statically linked by default.
* If the compiler is emitting both an rlib and a dylib, the same source object
file is currently used but with MSVC this may be less feasible. The compiler
may be able to get around this, but it may involve some invasive changes to
deal with this.
The flipside of this situation is that whenever you link to a dll and you import
a function from it, the import should be tagged with `dllimport`. At this time,
however, the compiler does not emit `dllimport` for any declarations other than
constants (where it is required), which is again suboptimal for even more
reasons!
* Calling a function imported from another dll without using `dllimport` causes
the linker/compiler to have extra overhead (one `jmp` instruction on x86) when
calling the function.
* The same object file may be used in different circumstances, so a function may
be imported from a dll if the object is linked into a dll, but it may be
just linked against if linked into an rlib.
* The compiler has no knowledge about whether native functions should be tagged
dllimport or not.
For now the compiler takes the perf hit (I do not have any numbers to this
effect) by marking very little as `dllimport` and praying the linker will take
care of everything. Fixing this problem will likely require adding a few
attributes to Rust itself (feature gated at the start) and then strongly
recommending static linkage on Windows! This may also involve shipping a
statically linked compiler on Windows instead of a dynamically linked compiler,
but these sorts of changes are pretty invasive and aren't part of this PR.
## CI integration
Thankfully we don't need to set up a new snapshot bot for the changes made here as our snapshots are freestanding already, we should be able to use the same snapshot to bootstrap both MinGW and MSVC compilers (once a new snapshot is made from these changes).
I plan on setting up a new suite of auto bots which are testing MSVC configurations for now as well, for now they'll just be bootstrapping and not running tests, but once unwinding is implemented they'll start running all tests as well and we'll eventually start gating on them as well.
---
I'd love as many eyes on this as we've got as this was one of my first interactions with MSVC and Visual Studio, so there may be glaring holes that I'm missing here and there!
cc @retep998, @ricky26, @vadimcn, @klutzy
r? @brson
It looks like section names in objects generated by `link.exe` are limited to at
most 8 characters in length, so shorten `.note.rustc` to just `.rustc`
This should hopefully fix all cast-related ICEs once and for all.
I managed to make diagnostics hate me and give me spurious "decoder error"
- removing $build/tmp/extended-errors seems to fix it.
This commit is an implementation of [RFC 1040][rfc] which is a redesign of the
currently-unstable `Duration` type. The API of the type has been scaled back to
be more conservative and it also no longer supports negative durations.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/1040-duration-reform.md
The inner `duration` module of the `time` module has now been hidden (as
`Duration` is reexported) and the feature name for this type has changed from
`std_misc` to `duration`. All APIs accepting durations have also been audited to
take a more flavorful feature name instead of `std_misc`.
Closes#24874
This commit is an implementation of [RFC 1040][rfc] which is a redesign of the
currently-unstable `Duration` type. The API of the type has been scaled back to
be more conservative and it also no longer supports negative durations.
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/1040-duration-reform.md
The inner `duration` module of the `time` module has now been hidden (as
`Duration` is reexported) and the feature name for this type has changed from
`std_misc` to `duration`. All APIs accepting durations have also been audited to
take a more flavorful feature name instead of `std_misc`.
Closes#24874
Turns out that a verbatim path was leaking through to gcc via the PATH
environment variable (pointing to the bundled gcc provided by the main
distribution) which was wreaking havoc when gcc itself was run. The fix here is
to just stop passing verbatim paths down by adding more liberal uses of
`fix_windows_verbatim_for_gcc`.
Closes#25072
Puts implementations in bins hashed by the fast-reject key, and
only looks up the relevant impls, reducing O(n^2)-ishness
Before: 688.92user 5.08system 8:56.70elapsed 129%CPU (0avgtext+0avgdata 1208164maxresident)k, LLVM 379.142s
After: 637.78user 5.11system 8:17.48elapsed 129%CPU (0avgtext+0avgdata 1201448maxresident)k LLVM 375.552s
Performance increase is +7%-ish
The former stopped making sense when we started interning substs and made
TraitRef a 2-word copy type, and I'm moving the latter into an arena as
they live as long as the type context.
This commit is an implementation of [RFC 1044][rfc] which adds additional
surface area to the `std::fs` module. All new APIs are `#[unstable]` behind
assorted feature names for each one.
[rfc]: https://github.com/rust-lang/rfcs/pull/1044
The new APIs added are:
* `fs::canonicalize` - bindings to `realpath` on unix and
`GetFinalPathNameByHandle` on windows.
* `fs::symlink_metadata` - similar to `lstat` on unix
* `fs::FileType` and accessor methods as `is_{file,dir,symlink}`
* `fs::Metadata::file_type` - accessor for the raw file type
* `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows
but requires a syscall on unix.
* `fs::DirEntry::file_type` - access the file type which may not require a
syscall on most platforms.
* `fs::DirEntry::file_name` - access just the file name without leading
components.
* `fs::PathExt::symlink_metadata` - convenience method for the top-level
function.
* `fs::PathExt::canonicalize` - convenience method for the top-level
function.
* `fs::PathExt::read_link` - convenience method for the top-level
function.
* `fs::PathExt::read_dir` - convenience method for the top-level
function.
* `std::os::raw` - type definitions for raw OS/C types available on all
platforms.
* `std::os::$platform` - new modules have been added for all currently supported
platforms (e.g. those more specific than just `unix`).
* `std::os::$platform::raw` - platform-specific type definitions. These modules
are populated with the bare essentials necessary for lowing I/O types into
their raw representations, and currently largely consist of the `stat`
definition for unix platforms.
This commit also deprecates `Metadata::{modified, accessed}` in favor of
inspecting the raw representations via the lowering methods of `Metadata`.
Closes https://github.com/rust-lang/rust/issues/24796
This commit is an implementation of [RFC 1044][rfc] which adds additional
surface area to the `std::fs` module. All new APIs are `#[unstable]` behind
assorted feature names for each one.
[rfc]: https://github.com/rust-lang/rfcs/pull/1044
The new APIs added are:
* `fs::canonicalize` - bindings to `realpath` on unix and
`GetFinalPathNameByHandle` on windows.
* `fs::symlink_metadata` - similar to `lstat` on unix
* `fs::FileType` and accessor methods as `is_{file,dir,symlink}`
* `fs::Metadata::file_type` - accessor for the raw file type
* `fs::DirEntry::metadata` - acquisition of metadata which is free on Windows
but requires a syscall on unix.
* `fs::DirEntry::file_type` - access the file type which may not require a
syscall on most platforms.
* `fs::DirEntry::file_name` - access just the file name without leading
components.
* `fs::PathExt::symlink_metadata` - convenience method for the top-level
function.
* `fs::PathExt::canonicalize` - convenience method for the top-level
function.
* `fs::PathExt::read_link` - convenience method for the top-level
function.
* `fs::PathExt::read_dir` - convenience method for the top-level
function.
* `std::os::raw` - type definitions for raw OS/C types available on all
platforms.
* `std::os::$platform` - new modules have been added for all currently supported
platforms (e.g. those more specific than just `unix`).
* `std::os::$platform::raw` - platform-specific type definitions. These modules
are populated with the bare essentials necessary for lowing I/O types into
their raw representations, and currently largely consist of the `stat`
definition for unix platforms.
This commit also deprecates `Metadata::{modified, accessed}` in favor of
inspecting the raw representations via the lowering methods of `Metadata`.