This commit builds on #65501 continue to simplify the build system and
compiler now that we no longer have multiple LLVM backends to ship by
default. Here this switches the compiler back to what it once was long
long ago, which is linking LLVM directly to the compiler rather than
dynamically loading it at runtime. The `codegen-backends` directory of
the sysroot no longer exists and all relevant support in the build
system is removed. Note that `rustc` still supports a dynamically loaded
codegen backend as it did previously, it just no longer supports
dynamically loaded codegen backends in its own sysroot.
Additionally as part of this the `librustc_codegen_llvm` crate now once
again explicitly depends on all of its crates instead of implicitly
loading them through the sysroot. This involved filling out its
`Cargo.toml` and deleting all the now-unnecessary `extern crate`
annotations in the header of the crate. (this in turn required adding a
number of imports for names of macros too).
The end results of this change are:
* Rustbuild's build process for the compiler as all the "oh don't forget
the codegen backend" checks can be easily removed.
* Building `rustc_codegen_llvm` is much simpler since it's simply
another compiler crate.
* Managing the dependencies of `rustc_codegen_llvm` is much simpler since
it's "just another `Cargo.toml` to edit"
* The build process should be a smidge faster because there's more
parallelism in the main rustc build step rather than splitting
`librustc_codegen_llvm` out to its own step.
* The compiler is expected to be slightly faster by default because the
codegen backend does not need to be dynamically loaded.
* Disabling LLVM as part of rustbuild is still supported, supporting
multiple codegen backends is still supported, and dynamic loading of a
codegen backend is still supported.
This adds a new option `-Zgenerate-arange-section`, enabled by default,
corresponding to LLVM's `-generate-arange-section`. This creates a
`.debug_aranges` section with DWARF address ranges, which some tools
depend on to optimize address lookups (elfutils [22288], [25173]).
This only has effect when debuginfo is enabled, and the additional data
is small compared to the other debug sections. For example, libstd.so
with full debuginfo is about 11MB, with just 61kB in aranges.
[22288]: https://sourceware.org/bugzilla/show_bug.cgi?id=22288
[25173]: https://sourceware.org/bugzilla/show_bug.cgi?id=25173Closes#45246.
Passes LLVM codegen and Emscripten link-time flags for exception
handling if and only if the panic strategy is `unwind`. Sets the
default panic strategy for Emscripten targets to `unwind`. Re-enables
tests that depend on unwinding support for Emscripten, including
`should_panic` tests.
- Compatible with Emscripten 1.38.46-upstream or later upstream.
- Refactors the Emscripten target spec to share code with other wasm
targets.
- Replaces the old incorrect wasm32 C call ABI with the correct one,
preserving the old one as wasm32_bindgen_compat for wasm-bindgen
compatibility.
- Updates the varargs ABI used by Emscripten and deletes the old one.
- Removes the obsolete wasm32-experimental-emscripten target.
- Uses EMCC_CFLAGS on CI to avoid the timeout problems with #63649.
- Refactors the Emscripten target spec to share code with other wasm
targets.
- Replaces the incorrect wasm32 C call ABI with the old asmjs
version, which is correct for both wasm32 and JS.
- Updates the varargs ABI used by Emscripten and deletes the old one.
- Removes the obsolete wasm32-experimental-emscripten target.
- Temporarily makes Emscripten targets use panic=abort by default
because supporting unwinding will require an LLVM patch.
"trampolines", or "aliases (the default)) to allow targets to opt out of
the MergeFunctions LLVM pass. Also add a corresponding -Z option with
the same name and values.
This works around: https://github.com/rust-lang/rust/issues/57356
Motivation:
Basically, the problem is that the MergeFunctions pass, which rustc
currently enables by default at -O2 and -O3, and `extern "ptx-kernel"`
functions (specific to the NVPTX target) are currently not compatible
with each other. If the MergeFunctions pass is allowed to run, rustc can
generate invalid PTX assembly (i.e. a PTX file that is not accepted by
the native PTX assembler ptxas). Therefore we would like a way to opt
out of the MergeFunctions pass, which is what our target option does.
Related work:
The current behavior of rustc is to enable MergeFunctions at -O2 and -O3,
and also to enable the use of function aliases within MergeFunctions.
MergeFunctions both with and without function aliases is incompatible with
the NVPTX target.
clang's "solution" is to have a "-fmerge-functions" flag that opts in to
the MergeFunctions pass, but it is not enabled by default.
Instead disable creation of assumptions during inlining using an
LLVM opt flag.
The -Z arg-align-attributes option which previously controlled this
behavior is removed.
This appears to be called `cx16` in LLVM and a few other locations, but
the Intel Intrinsic Guide doesn't have a name for this and the CPU
manual from Intel only mentions `cmpxchg16b`, so that's the name chosen
here.
If the Rust LLVM fork is used, enable the -mergefunc-use-aliases
flag, which will create aliases for merged functions, rather than
inserting a call from one to the other.
A number of codegen tests needed to be adjusted, because functions
that previously fell below the thunk limit are now being merged.
Merging is prevented either using -C no-prepopulate-passes, or by
making the functions non-identical.
I expect that this is going to break something, somewhere, because
it isn't able to deal with aliases properly, but we won't find out
until we try :)
This fixes#52651.
Implement rotate using funnel shift on LLVM >= 7
Implement the rotate_left and rotate_right operations using
llvm.fshl and llvm.fshr if they are available (LLVM >= 7).
Originally I wanted to expose the funnel_shift_left and
funnel_shift_right intrinsics and implement rotate_left and
rotate_right on top of them. However, emulation of funnel
shifts requires emitting a conditional to check for zero shift
amount, which is not necessary for rotates. I was uncomfortable
doing that here, as I don't want to rely on LLVM to optimize
away that conditional (and for variable rotates, I'm not sure it
can). We should revisit that question when we raise our minimum
version requirement to LLVM 7 and don't need emulation code
anymore.
Fixes#52457.
Implement the rotate_left and rotate_right operations using
llvm.fshl and llvm.fshr if they are available (LLVM >= 7).
Originally I wanted to expose the funnel_shift_left and
funnel_shift_right intrinsics and implement rotate_left and
rotate_right on top of them. However, emulation of funnel
shifts requires emitting a conditional to check for zero shift
amount, which is not necessary for rotates. I was uncomfortable
doing that here, as I don't want to rely on LLVM to optimize
away that conditional (and for variable rotates, I'm not sure it
can). We should revisit that question when we raise our minimum
version requirement to LLVM 7 and don't need emulation code
anymore.
rustc: Prepare the `atomics` feature for wasm
This commit adds a few changes for atomic instructions on the
`wasm32-unknown-unknown` target. Atomic instructions are not yet stable in
WebAssembly itself but there are multiple implementations and LLVM has support
for the proposed instruction set, so let's work on exposing it!
Here there are a few inclusions:
* The `atomics` feature was whitelisted for LLVM, allowing code in Rust to
enable/disable/gate on this.
* The `singlethread` option is turned off for wasm when the `atomics` feature is
enabled. This means that by default wasm won't be lowering with atomics, but
when atomics are enabled globally we'll turn off single-threaded mode to
actually codegen atomics. This probably isn't what we'll want in the long term
but for now it should work.
* Finally the maximum atomic width is increased to 64 to reflect the current
wasm spec.
This commit adds a few changes for atomic instructions on the
`wasm32-unknown-unknown` target. Atomic instructions are not yet stable in
WebAssembly itself but there are multiple implementations and LLVM has support
for the proposed instruction set, so let's work on exposing it!
Here there are a few inclusions:
* The `atomics` feature was whitelisted for LLVM, allowing code in Rust to
enable/disable/gate on this.
* The `singlethread` option is turned off for wasm when the `atomics` feature is
enabled. This means that by default wasm won't be lowering with atomics, but
when atomics are enabled globally we'll turn off single-threaded mode to
actually codegen atomics. This probably isn't what we'll want in the long term
but for now it should work.
* Finally the maximum atomic width is increased to 64 to reflect the current
wasm spec.
This fixes a regression from #53031 where specifying `-C target-cpu=native` is
printing a lot of warnings from LLVM about `native` being an unknown CPU. It
turns out that `native` is indeed an unknown CPU and we have to perform a
mapping to an actual CPU name, but this mapping is only performed in one
location rather than all locations we inform LLVM about the target CPU.
This commit centralizes the mapping of `native` to LLVM's value of the native
CPU, ensuring that all locations we inform LLVM about the `target-cpu` it's
never `native`.
Closes#53322
- `dsp`: the subtarget supports the DSP (saturating arith. and such)
instructions
- `rclass`: target is a Cortex-R
Both features are useful to support ARM MCUs on `coresimd`.
Note: Cortex-R52 is the first Armv8-R with `neon` support