Add cg_clif as optional codegen backend
Rustc_codegen_cranelift is an alternative codegen backend for rustc based on Cranelift. It has the potential to improve compilation times in debug mode. In my experience the compile time improvements over debug mode LLVM for a clean build are about 20-30% in most cases.
This PR adds cg_clif as optional codegen backend. By default it is only enabled for `./x.py check`. It can be enabled for `./x.py build` too by adding `cranelift` to the `rust.codegen-backends` array in `config.toml`.
MCP: https://github.com/rust-lang/compiler-team/issues/270
r? `@Mark-Simulacrum`
Preparation for a subsequent change that replaces
rustc_target::config::Config with its wrapped Target.
On its own, this commit breaks the build. I don't like making
build-breaking commits, but in this instance I believe that it
makes review easier, as the "real" changes of this PR can be
seen much more easily.
Result of running:
find compiler/ -type f -exec sed -i -e 's/target\.target\([)\.,; ]\)/target\1/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target\.target$/target/g' {} \;
find compiler/ -type f -exec sed -i -e 's/target.ptr_width/target.pointer_width/g' {} \;
./x.py fmt
Codegen backend interface refactor
This moves several things away from the codegen backend to rustc_interface. There are a few behavioral changes where previously the incremental cache (incorrectly) wouldn't get finalized, but now it does. See the individual commit messages.
rustc_target: Refactor away `TargetResult`
Follow-up to https://github.com/rust-lang/rust/pull/77202.
Construction of a built-in target is always infallible now, so `TargetResult` is no longer necessary.
The second commit contains some further cleanup based on built-in target construction being infallible.
RunCompiler::new takes non-optional params, and optional
params can be set using set_*field_name* method.
finally `run` will forward all fields to `run_compiler`.
Use `tracing` spans to trace the entire MIR interp stack
r? @RalfJung
While being very verbose, this allows really good tracking of what's going on. While I considered schemes like the previous indenter that we had (which we could get by using the `tracing-tree` crate), this will break down horribly with things like multithreaded rustc. Instead, we can now use `RUSTC_LOG` to restrict the things being traced. You could specify a filter in a way that only shows the logging of a specific frame.
![screenshot of command line output of the new formatting](https://user-images.githubusercontent.com/332036/89291343-aa40de00-d65a-11ea-9f6c-ea06c1806327.png)
If we lower the span's level to `debug`, then in `info` level logging we'd not see the frames, but in `debug` level we would see them. The filtering rules in `tracing` are super powerful, but I'm not sure if we can specify a filter so we do see `debug` level events, but *not* the `frame` spans. The documentation at https://docs.rs/tracing-subscriber/0.2.10/tracing_subscriber/struct.EnvFilter.html makes me think that we can only turn on things, not turn off things at a more precise level.
cc @hawkw
Add option to pass a custom codegen backend from a driver
This allows the driver to pass information to the codegen backend. For example the headcrab debugger may in the future want to use cg_clif to JIT code to be injected in the debuggee. This would PR make it possible to tell cg_clif which symbol can be found at which address and to tell it to inject the JITed code into the right process.
This PR may also help with https://github.com/rust-lang/miri/pull/1540 by allowing miri to provide a codegen backend that only emits metadata and doesn't perform any codegen.
cc @nbaksalyar (headcrab)
cc @RalfJung (miri)
diagnostics: shorten paths of unique symbols
This is a step towards implementing a fix for #50310, and continuation of the discussion in [Pre-RFC: Nicer Types In Diagnostics - compiler - Rust Internals](https://internals.rust-lang.org/t/pre-rfc-nicer-types-in-diagnostics/11139). Impressed upon me from previous discussion in #21934 that an RFC for this is not needed, and I should just come up with code.
The recent improvements to `use` suggestions that I've contributed have given rise to this implementation. Contrary to previous suggestions, it's rather simple logic, and I believe it only reduces the amount of cognitive load that a developer would need when reading type errors.
-----
If a symbol name can only be imported from one place, and as long as it was not glob-imported anywhere in the current crate, we can trim its printed path to the last component.
This has wide implications on error messages with types, for example, shortening `std::vec::Vec` to just `Vec`, as long as there is no other `Vec` importable from anywhere.
`run_compiler` is used by clippy and other tools, which should not have
the trimmed paths feature enabled by default, until we see it works well
for them.
Would also be nice to rename `TimePassesCallbacks` however it's a
submodule change.
If a symbol name can only be imported from one place for a type, and
as long as it was not glob-imported anywhere in the current crate, we
can trim its printed path and print only the name.
This has wide implications on error messages with types, for example,
shortening `std::vec::Vec` to just `Vec`, as long as there is no other
`Vec` importable anywhere.
This adds a new '-Z trim-diagnostic-paths=false' option to control this
feature.
On the good path, with no diagnosis printed, we should try to avoid
issuing this query, so we need to prevent trimmed_def_paths query on
several cases.
This change also relies on a previous commit that differentiates
between `Debug` and `Display` on various rustc types, where the latter
is trimmed and presented to the user and the former is not.