Refactor away RBML from rustc_metadata.
RBML and `ty{en,de}code` have had their long-overdue purge. Summary of changes:
* Metadata is now a tree encoded in post-order and with relative backward references pointing to children nodes. With auto-deriving and type safety, this makes maintenance and adding new information to metadata painless and bug-free by default. It's also more compact and cache-friendly (cache misses should be proportional to the depth of the node being accessed, not the number of siblings as in EBML/RBML).
* Metadata sizes have been reduced, for `libcore` it went down 16% (`8.38MB` -> `7.05MB`) and for `libstd` 14% (`3.53MB` -> `3.03MB`), while encoding more or less the same information
* Specialization is used in the bundled `libserialize` (crates.io `rustc_serialize` remains unaffected) to customize the encoding (and more importantly, decoding) of various types, most notably those interned in the `TyCtxt`. Some of this abuses a soundness hole pending a fix (cc @aturon), but when that fix arrives, we'll move to macros 1.1 `#[derive]` and custom `TyCtxt`-aware serialization traits.
* Enumerating children of modules from other crates is now orthogonal to describing those items via `Def` - this is a step towards bridging crate-local HIR and cross-crate metadata
* `CrateNum` has been moved to `rustc` and both it and `NodeId` are now newtypes instead of `u32` aliases, for specializing their decoding. This is `[syntax-breaking]` (cc @Manishearth ).
cc @rust-lang/compiler
Implement the `!` type
This implements the never type (`!`) and hides it behind the feature gate `#[feature(never_type)]`. With the feature gate off, things should build as normal (although some error messages may be different). With the gate on, `!` is usable as a type and diverging type variables (ie. types that are unconstrained by anything in the code) will default to `!` instead of `()`.
refactor lvalue_ty to be method of lvalue
Currently `Mir` (and `MirContext`) implement a method `lvalue_ty` (and actually many more `foo_ty`). But this should be a method of `Lvalue`.
If you have an `lvalue` and you want to get its type, the natural thing to write is:
```
lvalue.ty()
```
Of course it needs context, but still:
```
lvalue.ty(mir, tcx)
```
Makes more sense than
```
mir.lvalue_ty(lvalue, tcx)
```
I actually think we should go a step farther and have traits so we could get the type of some value generically, but that's up for debate. The thing I'm running into a lot in the compiler is I have a value of type `Foo` and I know that there is some related type `Bar` which I can get through some combination of method calls, but it's often not as direct as I would imagine. Unless you already know the code, its not clear why you would look in `Mir` for a method to get the type of an `Lvalue`.
Per the discussion on #34765, we make one `DepNode::Mir` variant and use
it to represent both the MIR tracking map as well as passes that operate
on MIR. We also track loads of cached MIR (which naturally comes from
metadata).
Note that the "HAIR" pass adds a read of TypeckItemBody because it uses
a myriad of tables that are not individually tracked.
Batch up libsyntax breaking changes
Batch of the following syntax-[breaking-change] changes:
- #34213: Add a variant `Macro` to `TraitItemKind`
- #34368: Merge the variant `QPath` of `PatKind` into the variant `PatKind::Path`
- #34385: Move `syntax::ast::TokenTree` into a new module `syntax::tokenstream`
- #33943:
- Remove the type parameter from `visit::Visitor`
- Remove `attr::WithAttrs` -- use `attr::HasAttrs` instead.
- Change `fold_tt`/`fold_tts` to take token trees by value and avoid wrapping token trees in `Rc`.
- Remove the field `ctxt` of `ast::Mac_`
- Remove inherent method `attrs()` of types -- use the method `attrs` of `HasAttrs` instead.
- #34316:
- Remove `ast::Decl`/`ast::DeclKind` and add variants `Local` and `Item` to `StmtKind`.
- Move the node id for statements from the `StmtKind` variants to a field of `Stmt` (making `Stmt` a struct instead of an alias for `Spanned<StmtKind>`)
- Rename `ast::ExprKind::Again` to `Continue`.
- #34339: Generalize and abstract `ThinAttributes` to `ThinVec<Attribute>`
- Use `.into()` in convert between `Vec<Attribute>` and `ThinVec<Attribute>`
- Use autoderef instead of `.as_attr_slice()`
- #34436: Remove the optional expression from `ast::Block` and instead use a `StmtKind::Expr` at the end of the statement list.
- #34403: Move errors into a separate crate (unlikely to cause breakage)
Use it instead of a `panic` for inexhaustive matches and correct the
comment. I think we trust our match-generation algorithm enough to
generate these blocks, and not generating an `unreachable` means that
LLVM won't optimize `match void() {}` to an `unreachable`.
this introduces a DropAndReplace terminator as a fix to #30380. That terminator
is suppsoed to be translated by desugaring during drop elaboration, which is
not implemented in this commit, so this breaks `-Z orbit` temporarily.
Incorporates many fixes contributed by arielb1.
----
revise borrowck::mir::dataflow code to allow varying domain for bitvectors.
This particular code implements the `BitDenotation` trait for three
analyses:
* `MovingOutStatements`, which, like `borrowck::move_data`, maps each
bit-index to a move instruction, and a 1 means "the effect of this
move reaches this point" (and the assigned l-value, if a scoped
declaration, is still in scope).
* `MaybeInitializedLvals`, which maps each bit-index to an l-value.
A 1 means "there exists a control flow path to this point that
initializes the associated l-value."
* `MaybeUninitializedLvals`, which maps each bit-index to an l-value
A 1 means "there exists a control flow path to this point that
de-initializes the associated l-value."
----
Revised `graphviz` dataflow-rendering support in `borrowck::mir`.
One big difference is that this code is now parameterized over the
`BitDenotation`, so that it can be used to render dataflow results
independent of how the dataflow bitvectors are interpreted; see where
reference to `MoveOut` is replaced by the type parameter `D`.
----
Factor out routine to query subattributes in `#[rustc_mir(..)]`.
(Later commits build upon this for some unit testing and instrumentation.)
----
thread through a tcx so that I can query types of lvalues as part of analysis.
----
Revised `BitDenotation::Ctxt`, allowing variation beyond `MoveData`.
The main motivation is to ease threading through a `TyCtxt`.
(In hindsight it might have been better to instead attach the `TyCtxt`
to each of the different dataflow implementations, but that would
require e.g. switching away from having a `Default` impl, so I am
leaving that experiment for another time.)