Make source-based code coverage compatible with MIR inlining
When codegenning code coverage use the instance that coverage data was
originally generated for, to ensure basic level of compatibility with
MIR inlining.
Fixes#83061
Emit error when trying to use assembler syntax directives in `asm!`
The `.intel_syntax` and `.att_syntax` assembler directives should not be used, in favor of not specifying a syntax for intel, and in favor of the explicit `att_syntax` option using the inline assembly options.
Closes#79869
When codegenning code coverage use the instance that coverage data was
originally generated for, to ensure basic level of compatibility with
MIR inlining.
This removes all of the code we had in place to work-around LLVM's
handling of forward progress. From this removal excluded is a workaround
where we'd insert a `sideeffect` into clearly infinite loops such as
`loop {}`. This code remains conditionally effective when the LLVM
version is earlier than 12.0, which fixed the forward progress related
miscompilations at their root.
expand: Refactor module loading
This is an accompanying PR to https://github.com/rust-lang/rust/pull/82399, but they can be landed independently.
See individual commits for more details.
Anyone should be able to review this equally well because all people actually familiar with this code left the project.
Let a portion of DefPathHash uniquely identify the DefPath's crate.
This allows to directly map from a `DefPathHash` to the crate it originates from, without constructing side tables to do that mapping -- something that is useful for incremental compilation where we deal with `DefPathHash` instead of `DefId` a lot.
It also allows to reliably and cheaply check for `DefPathHash` collisions which allows the compiler to gracefully abort compilation instead of running into a subsequent ICE at some random place in the code.
The following new piece of documentation describes the most interesting aspects of the changes:
```rust
/// A `DefPathHash` is a fixed-size representation of a `DefPath` that is
/// stable across crate and compilation session boundaries. It consists of two
/// separate 64-bit hashes. The first uniquely identifies the crate this
/// `DefPathHash` originates from (see [StableCrateId]), and the second
/// uniquely identifies the corresponding `DefPath` within that crate. Together
/// they form a unique identifier within an entire crate graph.
///
/// There is a very small chance of hash collisions, which would mean that two
/// different `DefPath`s map to the same `DefPathHash`. Proceeding compilation
/// with such a hash collision would very probably lead to an ICE and, in the
/// worst case, to a silent mis-compilation. The compiler therefore actively
/// and exhaustively checks for such hash collisions and aborts compilation if
/// it finds one.
///
/// `DefPathHash` uses 64-bit hashes for both the crate-id part and the
/// crate-internal part, even though it is likely that there are many more
/// `LocalDefId`s in a single crate than there are individual crates in a crate
/// graph. Since we use the same number of bits in both cases, the collision
/// probability for the crate-local part will be quite a bit higher (though
/// still very small).
///
/// This imbalance is not by accident: A hash collision in the
/// crate-local part of a `DefPathHash` will be detected and reported while
/// compiling the crate in question. Such a collision does not depend on
/// outside factors and can be easily fixed by the crate maintainer (e.g. by
/// renaming the item in question or by bumping the crate version in a harmless
/// way).
///
/// A collision between crate-id hashes on the other hand is harder to fix
/// because it depends on the set of crates in the entire crate graph of a
/// compilation session. Again, using the same crate with a different version
/// number would fix the issue with a high probability -- but that might be
/// easier said then done if the crates in questions are dependencies of
/// third-party crates.
///
/// That being said, given a high quality hash function, the collision
/// probabilities in question are very small. For example, for a big crate like
/// `rustc_middle` (with ~50000 `LocalDefId`s as of the time of writing) there
/// is a probability of roughly 1 in 14,750,000,000 of a crate-internal
/// collision occurring. For a big crate graph with 1000 crates in it, there is
/// a probability of 1 in 36,890,000,000,000 of a `StableCrateId` collision.
```
Given the probabilities involved I hope that no one will ever actually see the error messages. Nonetheless, I'd be glad about some feedback on how to improve them. Should we create a GH issue describing the problem and possible solutions to point to? Or a page in the rustc book?
r? `@pnkfelix` (feel free to re-assign)
Add option to enable MIR inlining independently of mir-opt-level
Add `-Zinline-mir` option that enables MIR inlining independently of the
current MIR opt level. The primary use-case is enabling MIR inlining on the
default MIR opt level.
Turn inlining thresholds into optional values to make it possible to configure
different defaults depending on the current mir-opt-level (although thresholds
are yet to be used in such a manner).
Cleanup `PpMode` and friends
This PR:
- Separates `PpSourceMode` and `PpHirMode` to remove invalid states
- Renames the variant to remove the redundant `Ppm` prefix
- Adds basic documentation for the different pretty-print modes
- Cleanups some code to make it more idiomatic
Not sure if this is actually useful, but it looks cleaner to me.
Set path of the compile unit to the source directory
As part of the effort to implement split dwarf debug info, we ended up
setting the compile unit location to the output directory rather than
the source directory. Furthermore, it seems like we failed to remap the
prefixes for this as well!
The desired behaviour is to instead set the `DW_AT_GNU_dwo_name` to a
path relative to compiler's working directory. This still allows
debuggers to find the split dwarf files, while not changing the
behaviour of the code that is compiling with regular debug info, and not
changing the compiler's behaviour with regards to reproducibility.
Fixes#82074
cc `@alexcrichton` `@davidtwco`
Make `treat_err_as_bug` Option<NonZeroUsize>
`rustc -Z treat-err-as-bug=N` already requires `N` to be nonzero when the argument is parsed, so changing the type from `Option<usize>` to `Option<NonZeroUsize>` is a low-hanging fruit in terms of layout optimization.
As part of the effort to implement split dwarf debug info, we ended up
setting the compile unit location to the output directory rather than
the source directory. Furthermore, it seems like we failed to remap the
prefixes for this as well!
The desired behaviour is to instead set the `DW_AT_GNU_dwo_name` to a
path relative to compiler's working directory. This still allows
debuggers to find the split dwarf files, while not changing the
behaviour of the code that is compiling with regular debug info, and not
changing the compiler's behaviour with regards to reproducibility.
Fixes#82074
This allows a build system to indicate a location in its own dependency
specification files (eg Cargo's `Cargo.toml`) which can be reported
along side any unused crate dependency.
This supports several types of location:
- 'json' - provide some json-structured data, which is included in the json diagnostics
in a `tool_metadata` field
- 'raw' - emit the provided string into the output. This also appears as a json string in
`tool_metadata`.
If no `--extern-location` is explicitly provided then a default json entry of the form
`"tool_metadata":{"name":<cratename>,"path":<cratepath>}` is emitted.
Fix rustc sysroot in systems using CAS
Change filesearch::get_or_default_sysroot() to check if sysroot is found using env::args().next() if rustc in argv[0] is a symlink; otherwise, or if it is not found, use env::current_exe() to imply sysroot. This makes the rustc binary able to locate Rust libraries in systems using content-addressable storage (CAS).
This allows to directly map from a DefPathHash to the crate it
originates from, without constructing side tables to do that mapping.
It also allows to reliably and cheaply check for DefPathHash collisions.
cfg(version): treat nightlies as complete
This PR makes cfg(version) treat the nightlies
for version 1.n.0 as 1.n.0, even though that nightly
version might not have all stabilizations and features
of the released 1.n.0. This is done for greater
convenience for people who want to test a newly
stabilized feature on nightly, or in other words,
give newly stabilized features as many eyeballs
as possible.
For users who wish to pin nightlies, this commit adds
a -Z assume-incomplete-release option that they can
enable if they run into any issues due to this change.
Implements the suggestion in https://github.com/rust-lang/rust/issues/64796#issuecomment-640851454
This commit makes cfg(version) treat the nightlies
for version 1.n.0 as 1.n.0, even though that nightly
version might not have all stabilizations and features
of the released 1.n.0. This is done for greater
convenience for people who want to test a newly
stabilized feature on nightly.
For users who wish to pin nightlies, this commit adds
a -Z assume-incomplete-release option that they can
enable if there are any issues due to this change.
rustc: Stabilize `-Zrun-dsymutil` as `-Csplit-debuginfo`
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:
* `off` - This indicates that split-debuginfo from the final artifact is
not desired. This is not supported on Windows and is the default on
Unix platforms except macOS. On macOS this means that `dsymutil` is
not executed.
* `packed` - This means that debuginfo is desired in one location
separate from the main executable. This is the default on Windows
(`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
`-Zsplit-dwarf=single` and produces a `*.dwp` file.
* `unpacked` - This means that debuginfo will be roughly equivalent to
object files, meaning that it's throughout the build directory
rather than in one location (often the fastest for local development).
This is not the default on any platform and is not supported on Windows.
Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.
Some equivalencies for previous unstable flags with the new flags are:
* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`
Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.
There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.
Closes#79361
This commit adds a new stable codegen option to rustc,
`-Csplit-debuginfo`. The old `-Zrun-dsymutil` flag is deleted and now
subsumed by this stable flag. Additionally `-Zsplit-dwarf` is also
subsumed by this flag but still requires `-Zunstable-options` to
actually activate. The `-Csplit-debuginfo` flag takes one of
three values:
* `off` - This indicates that split-debuginfo from the final artifact is
not desired. This is not supported on Windows and is the default on
Unix platforms except macOS. On macOS this means that `dsymutil` is
not executed.
* `packed` - This means that debuginfo is desired in one location
separate from the main executable. This is the default on Windows
(`*.pdb`) and macOS (`*.dSYM`). On other Unix platforms this subsumes
`-Zsplit-dwarf=single` and produces a `*.dwp` file.
* `unpacked` - This means that debuginfo will be roughly equivalent to
object files, meaning that it's throughout the build directory
rather than in one location (often the fastest for local development).
This is not the default on any platform and is not supported on Windows.
Each target can indicate its own default preference for how debuginfo is
handled. Almost all platforms default to `off` except for Windows and
macOS which default to `packed` for historical reasons.
Some equivalencies for previous unstable flags with the new flags are:
* `-Zrun-dsymutil=yes` -> `-Csplit-debuginfo=packed`
* `-Zrun-dsymutil=no` -> `-Csplit-debuginfo=unpacked`
* `-Zsplit-dwarf=single` -> `-Csplit-debuginfo=packed`
* `-Zsplit-dwarf=split` -> `-Csplit-debuginfo=unpacked`
Note that `-Csplit-debuginfo` still requires `-Zunstable-options` for
non-macOS platforms since split-dwarf support was *just* implemented in
rustc.
There's some more rationale listed on #79361, but the main gist of the
motivation for this commit is that `dsymutil` can take quite a long time
to execute in debug builds and provides little benefit. This means that
incremental compile times appear that much worse on macOS because the
compiler is constantly running `dsymutil` over every single binary it
produces during `cargo build` (even build scripts!). Ideally rustc would
switch to not running `dsymutil` by default, but that's a problem left
to get tackled another day.
Closes#79361
Change filesearch::get_or_default_sysroot() to check if sysroot is found
using env::args().next() if rustc in argv[0] is a symlink; otherwise, or
if it is not found, use env::current_exe() to imply sysroot. This makes
the rustc binary able to locate Rust libraries in systems using
content-addressable storage (CAS).
Enforce that query results implement Debug
Currently, we require that query keys implement `Debug`, but we do not do the same for query values. This can make incremental compilation bugs difficult to debug - there isn't a good place to print out the result loaded from disk.
This PR adds `Debug` bounds to several query-related functions, allowing us to debug-print the query value when an 'unstable fingerprint' error occurs. This required adding `#[derive(Debug)]` to a fairly large number of types - hopefully, this doesn't have much of an impact on compiler bootstrapping times.