Stabilize `duration_checked_float`
## Stabilization Report
This stabilization report is for a stabilization of `duration_checked_float`, tracking issue: https://github.com/rust-lang/rust/issues/83400.
### Implementation History
- https://github.com/rust-lang/rust/pull/82179
- https://github.com/rust-lang/rust/pull/90247
- https://github.com/rust-lang/rust/pull/96051
- Changed error type to `FromFloatSecsError` in https://github.com/rust-lang/rust/pull/90247
- https://github.com/rust-lang/rust/pull/96051 changes the rounding mode to round-to-nearest instead of truncate.
## API Summary
This stabilization report proposes the following API to be stabilized in `core`, along with their re-exports in `std`:
```rust
// core::time
impl Duration {
pub const fn try_from_secs_f32(secs: f32) -> Result<Duration, TryFromFloatSecsError>;
pub const fn try_from_secs_f64(secs: f64) -> Result<Duration, TryFromFloatSecsError>;
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct TryFromFloatSecsError { ... }
impl core::fmt::Display for TryFromFloatSecsError { ... }
impl core::error::Error for TryFromFloatSecsError { ... }
```
These functions are made const unstable under `duration_consts_float`, tracking issue #72440.
There is an open question in the tracking issue around what the error type should be called which I was hoping to resolve in the context of an FCP.
In this stabilization PR, I have altered the name of the error type to `TryFromFloatSecsError`. In my opinion, the error type shares the name of the method (adjusted to accommodate both types of floats), which is consistent with other error types in `core`, `alloc` and `std` like `TryReserveError` and `TryFromIntError`.
## Experience Report
Code such as this is ready to be converted to a checked API to ensure it is panic free:
```rust
impl Time {
pub fn checked_add_f64(&self, seconds: f64) -> Result<Self, TimeError> {
// Fail safely during `f64` conversion to duration
if seconds.is_nan() || seconds.is_infinite() {
return Err(TzOutOfRangeError::new().into());
}
if seconds.is_sign_positive() {
self.checked_add(Duration::from_secs_f64(seconds))
} else {
self.checked_sub(Duration::from_secs_f64(-seconds))
}
}
}
```
See: https://github.com/artichoke/artichoke/issues/2194.
`@rustbot` label +T-libs-api -T-libs
cc `@mbartlett21`
Add `struct FileTimes` to contain the relevant file timestamps, since
most platforms require setting all of them at once. (This also allows
for future platform-specific extensions such as setting creation time.)
Add `File::set_file_time` to set the timestamps for a `File`.
Implement the `sys` backends for UNIX, macOS (which needs to fall back
to `futimes` before macOS 10.13 because it lacks `futimens`), Windows,
and WASI.
This updates the standard library's documentation to use the new syntax. The
documentation is worthwhile to update as it should be more idiomatic
(particularly for features like this, which are nice for users to get acquainted
with). The general codebase is likely more hassle than benefit to update: it'll
hurt git blame, and generally updates can be done by folks updating the code if
(and when) that makes things more readable with the new format.
A few places in the compiler and library code are updated (mostly just due to
already having been done when this commit was first authored).
This removes all mutex/atomics based workarounds for non-monotonic clocks and makes the previously panicking methods saturating instead.
Effectively this moves the monotonization from `Instant` construction to the comparisons.
This has some observable effects, especially on platforms without monotonic clocks:
* Incorrectly ordered Instant comparisons no longer panic. This may hide some programming errors until someone actually looks at the resulting `Duration`
* `checked_duration_since` will now return `None` in more cases. Previously it only happened when one compared instants obtained in the wrong order or
manually created ones. Now it also does on backslides.
The upside is reduced complexity and lower overhead of `Instant::now`.
linux/aarch64 Now() should be actually_monotonic()
While issues have been seen on arm64 platforms the Arm architecture requires
that the counter monotonically increases and that it must provide a uniform
view of system time (e.g. it must not be possible for a core to receive a
message from another core with a time stamp and observe time going backwards
(ARM DDI 0487G.b D11.1.2). While there have been a few 64bit SoCs that have
bugs (#49281, #56940) which cause time to not monotonically increase, these have
been fixed in the Linux kernel and we shouldn't penalize all Arm SoCs for those
who refuse to update their kernels:
SUN50I_ERRATUM_UNKNOWN1 - Allwinner A64 / Pine A64 - fixed in 5.1
FSL_ERRATUM_A008585 - Freescale LS2080A/LS1043A - fixed in 4.10
HISILICON_ERRATUM_161010101 - Hisilicon 1610 - fixed in 4.11
ARM64_ERRATUM_858921 - Cortex A73 - fixed in 4.12
255a3f3e183 std: Force `Instant::now()` to be monotonic added a Mutex to work around
this problem and a small test program using glommio shows the majority of time spent
acquiring and releasing this Mutex. 3914a7b0da8 tries to improve this, but actually
makes it worse on big systems as for 128b atomics a ldxp/stxp pair (and successful loop)
for v8.4 systems that don't support FEAT_LSE2 is required which is expensive as a lock
and because of how the load/store-exclusives scale on large Arm systems is both unfair
to threads and tends to go backwards in performance.
A small sample program using glommio improves by 70x on a 32 core Graviton2
system with this change.
Add SOLID targets
This PR introduces new tier 3 targets for [SOLID](https://www.kmckk.co.jp/eng/SOLID/) embedded development platform by Kyoto Microcomputer Co., Ltd.
| Target name | `target_arch` | `target_vendor` | `target_os` |
|--------------------------------|---------------|-----------------|--------------|
| `aarch64-kmc-solid_asp3` | `aarch64` | `kmc` | `solid_asp3` |
| `armv7a-kmc-solid_asp3-eabi` | `arm` | `kmc` | `solid_asp3` |
| `armv7a-kmc-solid_asp3-eabihf` | `arm` | `kmc` | `solid_asp3` |
## Related PRs
- [ ] `libc`: https://github.com/rust-lang/libc/pull/2227
- [ ] `cc`: https://github.com/alexcrichton/cc-rs/pull/609
## Non-blocking Issues
- [ ] The target kernel can support `Thread::unpark` directly, but this property is not utilized because the underlying kernel feature is used to implement `Condvar` and it's unclear whether `std` should guarantee that parking tokens are not clobbered by other synchronization primitives.
- [ ] The rustc book: The page title "\*-kmc-solid-\*" shows up as "-kmc-solid-" in TOC
## Tier 3 Target Policy
As tier 3 targets, the new targets are required to adhere to [the tier 3 target policy](https://doc.rust-lang.org/nightly/rustc/target-tier-policy.html#tier-3-target-policy) requirements. This section quotes each requirement in entirety and describes how they are met.
> - A tier 3 target must have a designated developer or developers (the "target maintainers") on record to be CCed when issues arise regarding the target. (The mechanism to track and CC such developers may evolve over time.)
See [`src/doc/rustc/src/platform-support/kmc-solid.md`](https://github.com/kawadakk/rust/blob/release-add-solid-support/src/doc/rustc/src/platform-support/kmc-solid.md).
> - Targets must use naming consistent with any existing targets; for instance, a target for the same CPU or OS as an existing Rust target should use the same name for that CPU or OS. Targets should normally use the same names and naming conventions as used elsewhere in the broader ecosystem beyond Rust (such as in other toolchains), unless they have a very good reason to diverge. Changing the name of a target can be highly disruptive, especially once the target reaches a higher tier, so getting the name right is important even for a tier 3 target.
> - Target names should not introduce undue confusion or ambiguity unless absolutely necessary to maintain ecosystem compatibility. For example, if the name of the target makes people extremely likely to form incorrect beliefs about what it targets, the name should be changed or augmented to disambiguate it.
The new target names follow this format: `$ARCH-$VENDOR-$OS-$ABI`, which is already adopted by most existing targets. `$ARCH` and `$ABI` follow the convention: `aarch64-*` for AArch64, `armv7a-*-eabi` for Armv7-A with EABI. `$OS` is used to distinguish multiple variations of the platform in a somewhat similar way to the Apple targets, though we are only adding one variation in this PR. `$VENDOR` denotes the platform vendor name similarly to the Apple, Solaris, SGX, and VxWorks targets.
`$OS` corresponds to the value of `target_os` and takes the format `solid-$KERNEL`. The inclusion of a hyphen prevents unique decomposition of target names, though the mapping between target names and target attributes isn't trivial in the first place, e.g., because of the Android targets.
More targets may be added later, as we support other base kernels (there are at least three at the point of writing) and are interested in supporting other processor architectures in the future.
> - Tier 3 targets may have unusual requirements to build or use, but must not create legal issues or impose onerous legal terms for the Rust project or for Rust developers or users.
> - The target must not introduce license incompatibilities.
> - Anything added to the Rust repository must be under the standard Rust license (`MIT OR Apache-2.0`).
> - The target must not cause the Rust tools or libraries built for any other host (even when supporting cross-compilation to the target) to depend on any new dependency less permissive than the Rust licensing policy. This applies whether the dependency is a Rust crate that would require adding new license exceptions (as specified by the `tidy` tool in the rust-lang/rust repository), or whether the dependency is a native library or binary. In other words, the introduction of the target must not cause a user installing or running a version of Rust or the Rust tools to be subject to any new license requirements.
> - If the target supports building host tools (such as `rustc` or `cargo`), those host tools must not depend on proprietary (non-FOSS) libraries, other than ordinary runtime libraries supplied by the platform and commonly used by other binaries built for the target. For instance, `rustc` built for the target may depend on a common proprietary C runtime library or console output library, but must not depend on a proprietary code generation library or code optimization library. Rust's license permits such combinations, but the Rust project has no interest in maintaining such combinations within the scope of Rust itself, even at tier 3.
> - Targets should not require proprietary (non-FOSS) components to link a functional binary or library.
> - "onerous" here is an intentionally subjective term. At a minimum, "onerous" legal/licensing terms include but are *not* limited to: non-disclosure requirements, non-compete requirements, contributor license agreements (CLAs) or equivalent, "non-commercial"/"research-only"/etc terms, requirements conditional on the employer or employment of any particular Rust developers, revocable terms, any requirements that create liability for the Rust project or its developers or users, or any requirements that adversely affect the livelihood or prospects of the Rust project or its developers or users.
We intend to make the contribution fully available under the standard Rust license with no additional legal restrictions whatsoever. This PR does not introduce any new dependency less permissive than the Rust license policy, and we are willing to ensure this doesn't happen for future contributions regarding the new targets.
The new targets don't support building host tools.
Although the new targets use a platform-provided C compiler toolchain, it can be substituted by [GNU Arm Embedded Toolchain](https://developer.arm.com/tools-and-software/open-source-software/developer-tools/gnu-toolchain/gnu-rm) for testing purposes.
> - Tier 3 targets should attempt to implement as much of the standard libraries as possible and appropriate (`core` for most targets, `alloc` for targets that can support dynamic memory allocation, `std` for targets with an operating system or equivalent layer of system-provided functionality), but may leave some code unimplemented (either unavailable or stubbed out as appropriate), whether because the target makes it impossible to implement or challenging to implement. The authors of pull requests are not obligated to avoid calling any portions of the standard library on the basis of a tier 3 target not implementing those portions.
Most features are implemented. The following features are not implemented due to the lack of native support:
- `fs::File::{file_attr, truncate, duplicate, set_permissions}`
- `fs::{symlink, link, canonicalize}`
- Process creation
- Command-line arguments
~~Networking is not implemented yet, and we intend to add it as soon as it's ready.~~
Edit (2021-07-07): Networking is now implemented.
Backtrace generation is not really a good fit for embedded targets, so it's intentionally left unimplemented. Unwinding is functional, however.
> - The target must provide documentation for the Rust community explaining how to build for the target, using cross-compilation if possible. If the target supports running tests (even if they do not pass), the documentation must explain how to run tests for the target, using emulation if possible or dedicated hardware if necessary.
See [`src/doc/rustc/src/platform-support/kmc-solid.md`](https://github.com/kawadakk/rust/blob/release-add-solid-support/src/doc/rustc/src/platform-support/kmc-solid.md). Running tests is not supported.
> - Neither this policy nor any decisions made regarding targets shall create any binding agreement or estoppel by any party. If any member of an approving Rust team serves as one of the maintainers of a target, or has any legal or employment requirement (explicit or implicit) that might affect their decisions regarding a target, they must recuse themselves from any approval decisions regarding the target's tier status, though they may otherwise participate in discussions.
> - This requirement does not prevent part or all of this policy from being cited in an explicit contract or work agreement (e.g. to implement or maintain support for a target). This requirement exists to ensure that a developer or team responsible for reviewing and approving a target does not face any legal threats or obligations that would prevent them from freely exercising their judgment in such approval, even if such judgment involves subjective matters or goes beyond the letter of these requirements.
> - Tier 3 targets must not impose burden on the authors of pull requests, or other developers in the community, to maintain the target. In particular, do not post comments (automated or manual) on a PR that derail or suggest a block on the PR based on a tier 3 target. Do not send automated messages or notifications (via any medium, including via ``@`)` to a PR author or others involved with a PR regarding a tier 3 target, unless they have opted into such messages.
> - Backlinks such as those generated by the issue/PR tracker when linking to an issue or PR are not considered a violation of this policy, within reason. However, such messages (even on a separate repository) must not generate notifications to anyone involved with a PR who has not requested such notifications.
> - Patches adding or updating tier 3 targets must not break any existing tier 2 or tier 1 target, and must not knowingly break another tier 3 target without approval of either the compiler team or the maintainers of the other tier 3 target.
> - In particular, this may come up when working on closely related targets, such as variations of the same architecture with different features. Avoid introducing unconditional uses of features that another variation of the target may not have; use conditional compilation or runtime detection, as appropriate, to let each target run code supported by that target.
We acknowledge these requirements and intend to ensure they are met.
There are no closely related targets at the moment.
SOLID[1] is an embedded development platform provided by Kyoto
Microcomputer Co., Ltd. This commit introduces a basic Tier 3 support
for SOLID.
# New Targets
The following targets are added:
- `aarch64-kmc-solid_asp3`
- `armv7a-kmc-solid_asp3-eabi`
- `armv7a-kmc-solid_asp3-eabihf`
SOLID's target software system can be divided into two parts: an
RTOS kernel, which is responsible for threading and synchronization,
and Core Services, which provides filesystems, networking, and other
things. The RTOS kernel is a μITRON4.0[2][3]-derived kernel based on
the open-source TOPPERS RTOS kernels[4]. For uniprocessor systems
(more precisely, systems where only one processor core is allocated for
SOLID), this will be the TOPPERS/ASP3 kernel. As μITRON is
traditionally only specified at the source-code level, the ABI is
unique to each implementation, which is why `asp3` is included in the
target names.
More targets could be added later, as we support other base kernels
(there are at least three at the point of writing) and are interested
in supporting other processor architectures in the future.
# C Compiler
Although SOLID provides its own supported C/C++ build toolchain, GNU Arm
Embedded Toolchain seems to work for the purpose of building Rust.
# Unresolved Questions
A μITRON4 kernel can support `Thread::unpark` natively, but it's not
used by this commit's implementation because the underlying kernel
feature is also used to implement `Condvar`, and it's unclear whether
`std` should guarantee that parking tokens are not clobbered by other
synchronization primitives.
# Unsupported or Unimplemented Features
Most features are implemented. The following features are not
implemented due to the lack of native support:
- `fs::File::{file_attr, truncate, duplicate, set_permissions}`
- `fs::{symlink, link, canonicalize}`
- Process creation
- Command-line arguments
Backtrace generation is not really a good fit for embedded targets, so
it's intentionally left unimplemented. Unwinding is functional, however.
## Dynamic Linking
Dynamic linking is not supported. The target platform supports dynamic
linking, but enabling this in Rust causes several problems.
- The linker invocation used to build the shared object of `std` is
too long for the platform-provided linker to handle.
- A linker script with specific requirements is required for the
compiled shared object to be actually loadable.
As such, we decided to disable dynamic linking for now. Regardless, the
users can try to create shared objects by manually invoking the linker.
## Executable
Building an executable is not supported as the notion of "executable
files" isn't well-defined for these targets.
[1] https://solid.kmckk.com/SOLID/
[2] http://ertl.jp/ITRON/SPEC/mitron4-e.html
[3] https://en.wikipedia.org/wiki/ITRON_project
[4] https://toppers.jp/
Fix spacing of links in inline code.
Similar to #80733, but the focus is different. This PR eliminates all occurrences of pieced-together inline code blocks like [`Box`]`<`[`Option`]`<T>>` and replaces them with good-looking ones (using HTML-syntax), like <code>[Box]<[Option]\<T>></code>. As far as I can tell, I should’ve found all of these in the standard library (regex search with `` r"`\]`|`\[`" ``) \[except for in `core::convert` where I’ve noticed other things in the docs that I want to fix in a separate PR]. In particular, unlike #80733, I’ve added almost no new instance of inline code that’s broken up into multiple links (or some link and some link-free part). I also added tooltips (the stuff in quotes for the markdown link listings) in places that caught my eye, but that’s by no means systematic, just opportunistic.
[Box]: https://doc.rust-lang.org/std/boxed/struct.Box.html "Box"
[`Box`]: https://doc.rust-lang.org/std/boxed/struct.Box.html "Box"
[Option]: https://doc.rust-lang.org/std/option/enum.Option.html "Option"
[`Option`]: https://doc.rust-lang.org/std/option/enum.Option.html "Option"
Context: I got annoyed by repeatedly running into new misformatted inline code while reading the standard library docs. I know that once issue #83997 (and/or related ones) are resolved, these changes become somewhat obsolete, but I fail to notice much progress on that end right now.
r? `@jyn514`
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::fmt
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::{rc, sync}
----------
Fix spacing for links inside code blocks, and improve link tooltips in alloc::string
----------
Fix spacing for links inside code blocks in alloc::vec
----------
Fix spacing for links inside code blocks in core::option
----------
Fix spacing for links inside code blocks, and improve a few link tooltips in core::result
----------
Fix spacing for links inside code blocks in core::{iter::{self, iterator}, stream::stream, poll}
----------
Fix spacing for links inside code blocks, and improve a few link tooltips in std::{fs, path}
----------
Fix spacing for links inside code blocks in std::{collections, time}
----------
Fix spacing for links inside code blocks in and make formatting of `&str`-like types consistent in std::ffi::{c_str, os_str}
----------
Fix spacing for links inside code blocks, and improve link tooltips in std::ffi
----------
Fix spacing for links inside code blocks, and improve a few link tooltips
in std::{io::{self, buffered::{bufreader, bufwriter}, cursor, util}, net::{self, addr}}
----------
Fix typo in link to `into` for `OsString` docs
----------
Remove tooltips that will probably become redundant in the future
----------
Apply suggestions from code review
Replacing `…std/primitive.reference.html` paths with just `reference`
Co-authored-by: Joshua Nelson <github@jyn.dev>
----------
Also replace `…std/primitive.reference.html` paths with just `reference` in `core::pin`
While issues have been seen on arm64 platforms the Arm architecture requires
that the counter monotonically increases and that it must provide a uniform
view of system time (e.g. it must not be possible for a core to receive a
message from another core with a time stamp and observe time going backwards
(ARM DDI 0487G.b D11.1.2). While there have been a few 64bit SoCs that have
bugs (#49281, #56940) which cause time to not monotonically increase, these have
been fixed in the Linux kernel and we shouldn't penalize all Arm SoCs for those
who refuse to update their kernels:
SUN50I_ERRATUM_UNKNOWN1 - Allwinner A64 / Pine A64 - fixed in 5.1
FSL_ERRATUM_A008585 - Freescale LS2080A/LS1043A - fixed in 4.10
HISILICON_ERRATUM_161010101 - Hisilicon 1610 - fixed in 4.11
ARM64_ERRATUM_858921 - Cortex A73 - fixed in 4.12
255a3f3e183 std: Force `Instant::now()` to be monotonic added a mutex to work around
this problem and a small test program using glommio shows the majority of time spent
acquiring and releasing this Mutex. 3914a7b0da8 tries to improve this, but actually
makes it worse on big systems as for 128b atomics a ldxp/stxp pair (and
successful loop) is required which is expensive as a lock and because of how
the load/store-exclusives scale on large Arm systems is both unfair to threads
and tends to go backwards in performance.
The discussion seems to have resolved that this lint is a bit "noisy" in
that applying it in all places would result in a reduction in
readability.
A few of the trivial functions (like `Path::new`) are fine to leave
outside of closures.
The general rule seems to be that anything that is obviously an
allocation (`Box`, `Vec`, `vec![]`) should be in a closure, even if it
is a 0-sized allocation.
The (unsafe) Mutex from sys_common had a rather complicated interface.
You were supposed to call init() manually, unless you could guarantee it
was neither moved nor used reentrantly.
Calling `destroy()` was also optional, although it was unclear if 1)
resources might be leaked or not, and 2) if destroy() should only be
called when `init()` was called.
This allowed for a number of interesting (confusing?) different ways to
use this Mutex, all captured in a single type.
In practice, this type was only ever used in two ways:
1. As a static variable. In this case, neither init() nor destroy() are
called. The variable is never moved, and it is never used
reentrantly. It is only ever locked using the LockGuard, never with
raw_lock.
2. As a Boxed variable. In this case, both init() and destroy() are
called, it will be moved and possibly used reentrantly.
No other combinations are used anywhere in `std`.
This change simplifies things by splitting this Mutex type into
two types matching the two use cases: StaticMutex and MovableMutex.
The interface of both new types is now both safer and simpler. The first
one does not call nor expose init/destroy, and the second one calls
those automatically in its new() and Drop functions. Also, the locking
functions of MovableMutex are no longer unsafe.