Commit Graph

21 Commits

Author SHA1 Message Date
Ayush Singh
c7e5f3ca08
Rebase to master
- Update Example
- Add thread_parking to sys::uefi
- Fix unsafe in unsafe errors
- Improve docs
- Improve os/exit
- Some asserts
- Switch back to atomics

Signed-off-by: Ayush Singh <ayushdevel1325@gmail.com>
2023-09-22 17:23:33 +05:30
Ayush Singh
48c6ae0611
Add Minimal Std implementation for UEFI
Implemented modules:
1. alloc
2. os_str
3. env
4. math

Tracking Issue: https://github.com/rust-lang/rust/issues/100499
API Change Proposal: https://github.com/rust-lang/libs-team/issues/87

This was originally part of https://github.com/rust-lang/rust/pull/100316. Since
that PR was becoming too unwieldy and cluttered, and with suggestion
from @dvdhrm, I have extracted a minimal std implementation to this PR.

Signed-off-by: Ayush Singh <ayushsingh1325@gmail.com>
2023-09-22 17:23:30 +05:30
Samuel Thibault
dcea7709f2 added support for GNU/Hurd 2023-09-21 17:31:25 +02:00
Sean Cross
61cfb1734a libstd: add xous to libstd
Add the `xous` target to libstd. Currently this defers everything to the
`unsupported` target.

Signed-off-by: Sean Cross <sean@xobs.io>
2023-08-22 08:20:04 +08:00
Thom Chiovoloni
bdc3db944c
wip: Support Apple tvOS in libstd 2023-06-21 14:59:37 -07:00
Pietro Albini
6fd0d1ba14
make sure the standard library compiles properly with synthetic targets
It might happen that a synthetic target name does not match one of the
hardcoded ones in std's build script, causing std to fail to build. This
commit changes the std build script avoid including the restricted-std
feature unconditionally when a synthetic target is being built.
2023-06-12 09:34:13 +02:00
Nikolay Arhipov
3ba3df3764 PS Vita std support 2023-05-07 18:57:43 +03:00
David CARLIER
ed5c0f66ac socket ancillary data implementation for FreeBSD (from 13 and above).
introducing new build config as well.
2023-03-27 16:48:41 +01:00
Florian Bartels
3ce2cd059f
Add QNX Neutrino support to libstd
Co-authored-by: gh-tr <troach@qnx.com>
2023-02-28 15:59:47 +01:00
Vladimir Michael Eatwell
439d64a83c Library changes for Apple WatchOS 2022-07-20 08:57:36 +01:00
Meziu
4e808f87cc
Horizon OS STD support
Co-authored-by: Ian Chamberlain <ian.h.chamberlain@gmail.com>
Co-authored-by: Mark Drobnak <mark.drobnak@gmail.com>
2022-06-13 20:44:39 -07:00
Alex Crichton
7f3ffbc8c2 std: Get the standard library compiling for wasm64
This commit goes through and updates various `#[cfg]` as appropriate to
get the wasm64-unknown-unknown target behaving similarly to the
wasm32-unknown-unknown target. Most of this is just updating various
conditions for `target_arch = "wasm32"` to also account for `target_arch
= "wasm64"` where appropriate. This commit also lists `wasm64` as an
allow-listed architecture to not have the `restricted_std` feature
enabled, enabling experimentation with `-Z build-std` externally.

The main goal of this commit is to enable playing around with
`wasm64-unknown-unknown` externally via `-Z build-std` in a way that's
similar to the `wasm32-unknown-unknown` target. These targets are
effectively the same and only differ in their pointer size, but wasm64
is much newer and has much less ecosystem/library support so it'll still
take time to get wasm64 fully-fledged.
2021-11-10 08:35:42 -08:00
Tomoaki Kawada
da9ca41c31 Add SOLID targets
SOLID[1] is an embedded development platform provided by Kyoto
Microcomputer Co., Ltd. This commit introduces a basic Tier 3 support
for SOLID.

# New Targets

The following targets are added:

 - `aarch64-kmc-solid_asp3`
 - `armv7a-kmc-solid_asp3-eabi`
 - `armv7a-kmc-solid_asp3-eabihf`

SOLID's target software system can be divided into two parts: an
RTOS kernel, which is responsible for threading and synchronization,
and Core Services, which provides filesystems, networking, and other
things. The RTOS kernel is a μITRON4.0[2][3]-derived kernel based on
the open-source TOPPERS RTOS kernels[4]. For uniprocessor systems
(more precisely, systems where only one processor core is allocated for
SOLID), this will be the TOPPERS/ASP3 kernel. As μITRON is
traditionally only specified at the source-code level, the ABI is
unique to each implementation, which is why `asp3` is included in the
target names.

More targets could be added later, as we support other base kernels
(there are at least three at the point of writing) and are interested
in supporting other processor architectures in the future.

# C Compiler

Although SOLID provides its own supported C/C++ build toolchain, GNU Arm
Embedded Toolchain seems to work for the purpose of building Rust.

# Unresolved Questions

A μITRON4 kernel can support `Thread::unpark` natively, but it's not
used by this commit's implementation because the underlying kernel
feature is also used to implement `Condvar`, and it's unclear whether
`std` should guarantee that parking tokens are not clobbered by other
synchronization primitives.

# Unsupported or Unimplemented Features

Most features are implemented. The following features are not
implemented due to the lack of native support:

- `fs::File::{file_attr, truncate, duplicate, set_permissions}`
- `fs::{symlink, link, canonicalize}`
- Process creation
- Command-line arguments

Backtrace generation is not really a good fit for embedded targets, so
it's intentionally left unimplemented. Unwinding is functional, however.

## Dynamic Linking

Dynamic linking is not supported. The target platform supports dynamic
linking, but enabling this in Rust causes several problems.

 - The linker invocation used to build the shared object of `std` is
   too long for the platform-provided linker to handle.

 - A linker script with specific requirements is required for the
   compiled shared object to be actually loadable.

As such, we decided to disable dynamic linking for now. Regardless, the
users can try to create shared objects by manually invoking the linker.

## Executable

Building an executable is not supported as the notion of "executable
files" isn't well-defined for these targets.

[1] https://solid.kmckk.com/SOLID/
[2] http://ertl.jp/ITRON/SPEC/mitron4-e.html
[3] https://en.wikipedia.org/wiki/ITRON_project
[4] https://toppers.jp/
2021-09-28 11:31:47 +09:00
ivmarkov
459eaa6bae STD support for the ESP-IDF framework 2021-08-10 12:09:00 +03:00
Lzu Tao
6bfe27a3e0 Drop support for cloudabi targets 2020-11-22 17:11:41 -05:00
bjorn3
6f3872a14c Make the libstd build script smaller
Remove all rustc-link-lib from the std build script. Also remove use of
feature = "restricted-std" where not necessary.
2020-11-15 16:17:21 +01:00
Josh Triplett
f9457fb809 Remove duplicated library links between std and libc
The libc crate is already responsible for linking in the appropriate
libraries, and std doing the same thing results in duplicated library
names on the linker command line. Removing this duplication slightly
reduces linker time, and makes it simpler to adjust the set or order of
linked libraries in one place (such as to add static linking support).
2020-09-21 01:37:15 -07:00
Dylan McKay
a0905ceff9 [AVR] Rename the last few remaining references from 'avr-unknown-unknown' to 'avr-unknown-gnu-atmega328' 2020-08-24 18:45:24 +12:00
Greg V
ddbc45673b Add RUST_STD_FREEBSD_12_ABI env variable
Unfortunately, sanitizers do not support versioned symbols[1],
so they break filesystem access via the legacy, pre-ino64 ABI.

To use sanitizers on FreeBSD >= 12, we need to build the libc
crate with LIBC_CI=1 to use the new ABI -- including the libc
used for std. But that removes the st_lspare field std was
expecting for the deprecated metadata extension.

Add a way to skip that field to allow the build to work.

[1]: https://github.com/google/sanitizers/issues/628
2020-08-09 17:52:00 +03:00
Alex Crichton
06d565c967 std: Switch from libbacktrace to gimli
This commit is a proof-of-concept for switching the standard library's
backtrace symbolication mechanism on most platforms from libbacktrace to
gimli. The standard library's support for `RUST_BACKTRACE=1` requires
in-process parsing of object files and DWARF debug information to
interpret it and print the filename/line number of stack frames as part
of a backtrace.

Historically this support in the standard library has come from a
library called "libbacktrace". The libbacktrace library seems to have
been extracted from gcc at some point and is written in C. We've had a
lot of issues with libbacktrace over time, unfortunately, though. The
library does not appear to be actively maintained since we've had
patches sit for months-to-years without comments. We have discovered a
good number of soundness issues with the library itself, both when
parsing valid DWARF as well as invalid DWARF. This is enough of an issue
that the libs team has previously decided that we cannot feed untrusted
inputs to libbacktrace. This also doesn't take into account the
portability of libbacktrace which has been difficult to manage and
maintain over time. While possible there are lots of exceptions and it's
the main C dependency of the standard library right now.

For years it's been the desire to switch over to a Rust-based solution
for symbolicating backtraces. It's been assumed that we'll be using the
Gimli family of crates for this purpose, which are targeted at safely
and efficiently parsing DWARF debug information. I've been working
recently to shore up the Gimli support in the `backtrace` crate. As of a
few weeks ago the `backtrace` crate, by default, uses Gimli when loaded
from crates.io. This transition has gone well enough that I figured it
was time to start talking seriously about this change to the standard
library.

This commit is a preview of what's probably the best way to integrate
the `backtrace` crate into the standard library with the Gimli feature
turned on. While today it's used as a crates.io dependency, this commit
switches the `backtrace` crate to a submodule of this repository which
will need to be updated manually. This is not done lightly, but is
thought to be the best solution. The primary reason for this is that the
`backtrace` crate needs to do some pretty nontrivial filesystem
interactions to locate debug information. Working without `std::fs` is
not an option, and while it might be possible to do some sort of
trait-based solution when prototyped it was found to be too unergonomic.
Using a submodule allows the `backtrace` crate to build as a submodule
of the `std` crate itself, enabling it to use `std::fs` and such.

Otherwise this adds new dependencies to the standard library. This step
requires extra attention because this means that these crates are now
going to be included with all Rust programs by default. It's important
to note, however, that we're already shipping libbacktrace with all Rust
programs by default and it has a bunch of C code implementing all of
this internally anyway, so we're basically already switching
already-shipping functionality to Rust from C.

* `object` - this crate is used to parse object file headers and
  contents. Very low-level support is used from this crate and almost
  all of it is disabled. Largely we're just using struct definitions as
  well as convenience methods internally to read bytes and such.

* `addr2line` - this is the main meat of the implementation for
  symbolication. This crate depends on `gimli` for DWARF parsing and
  then provides interfaces needed by the `backtrace` crate to turn an
  address into a filename / line number. This crate is actually pretty
  small (fits in a single file almost!) and mirrors most of what
  `dwarf.c` does for libbacktrace.

* `miniz_oxide` - the libbacktrace crate transparently handles
  compressed debug information which is compressed with zlib. This crate
  is used to decompress compressed debug sections.

* `gimli` - not actually used directly, but a dependency of `addr2line`.

* `adler32`- not used directly either, but a dependency of
  `miniz_oxide`.

The goal of this change is to improve the safety of backtrace
symbolication in the standard library, especially in the face of
possibly malformed DWARF debug information. Even to this day we're still
seeing segfaults in libbacktrace which could possibly become security
vulnerabilities. This change should almost entirely eliminate this
possibility whilc also paving the way forward to adding more features
like split debug information.

Some references for those interested are:

* Original addition of libbacktrace - #12602
* OOM with libbacktrace - #24231
* Backtrace failure due to use of uninitialized value - #28447
* Possibility to feed untrusted data to libbacktrace - #21889
* Soundness fix for libbacktrace - #33729
* Crash in libbacktrace - #39468
* Support for macOS, never merged - ianlancetaylor/libbacktrace#2
* Performance issues with libbacktrace - #29293, #37477
* Update procedure is quite complicated due to how many patches we
  need to carry - #50955
* Libbacktrace doesn't work on MinGW with dynamic libs - #71060
* Segfault in libbacktrace on macOS - #71397

Switching to Rust will not make us immune to all of these issues. The
crashes are expected to go away, but correctness and performance may
still have bugs arise. The gimli and `backtrace` crates, however, are
actively maintained unlike libbacktrace, so this should enable us to at
least efficiently apply fixes as situations come up.
2020-07-28 16:34:01 -07:00
mark
2c31b45ae8 mv std libs to library/ 2020-07-27 19:51:13 -05:00