Lower let-else in MIR
This MR will switch to lower let-else statements in MIR building instead.
To lower let-else in MIR, we build a mini-switch two branches. One branch leads to the matching case, and the other leads to the `else` block. This arrangement will allow temporary lifetime analysis running as-is so that the temporaries are properly extended according to the same rule applied to regular `let` statements.
cc https://github.com/rust-lang/rust/issues/87335Fix#98672
Fix duplicated type annotation suggestion
Before, there was more or less duplicated suggestions to add type hints.
Fix by clearing more generic suggestions when a more specific suggestion
is possible.
This fixes#93506 .
There are several indications that we should not ZST as a ScalarInt:
- We had two ways to have ZST valtrees, either an empty `Branch` or a `Leaf` with a ZST in it.
`ValTree::zst()` used the former, but the latter could possibly arise as well.
- Likewise, the interpreter had `Immediate::Uninit` and `Immediate::Scalar(Scalar::ZST)`.
- LLVM codegen already had to special-case ZST ScalarInt.
So instead add new ZST variants to those types that did not have other variants
which could be used for this purpose.
Before, there was more or less duplicated suggestions to add type hints.
Fix by clearing more generic suggestions when a more specific suggestion
is possible.
This fixes#93506 .
Track implicit `Sized` obligations in type params
When we evaluate `ty::GenericPredicates` we introduce the implicit
`Sized` predicate of type params, but we do so with only the `Predicate`
its `Span` as context, we don't have an `Obligation` or
`ObligationCauseCode` we could influence. To try and carry this
information through, we add a new field to `ty::GenericPredicates` that
tracks both which predicates come from a type param and whether that
param has any bounds already (to use in suggestions).
We also suggest adding a `?Sized` bound if appropriate on E0599.
Address part of #98539.
don't succeed `evaluate_obligation` query if new opaque types were registered
fixes#98608fixes#98604
The root cause of all this is that in type flag computation we entirely ignore nongeneric things like struct fields and the signature of function items. So if a flag had to be set for a struct if it is set for a field, that will only happen if the field is generic, as only the generic parameters are checked.
I now believe we cannot use type flags to handle opaque types. They seem like the wrong tool for this.
Instead, this PR replaces the previous logic by adding a new variant of `EvaluatedToOk`: `EvaluatedToOkModuloOpaqueTypes`, which says that there were some opaque types that got hidden types bound, but that binding may not have been legal (because we don't know if the opaque type was in its defining scope or not).
Highlight conflicting param-env candidates
This could probably be further improved by noting _why_ equivalent param-env candidates (modulo regions) leads to ambiguity.
Fixes#98786
macros: `LintDiagnostic` derive
- Move `LintDiagnosticBuilder` into `rustc_errors` so that a diagnostic derive can refer to it.
- Introduce a `DecorateLint` trait, which is equivalent to `SessionDiagnostic` or `AddToDiagnostic` but for lints. Necessary without making more changes to the lint infrastructure as `DecorateLint` takes a `LintDiagnosticBuilder` and re-uses all of the existing logic for determining what type of diagnostic a lint should be emitted as (e.g. error/warning).
- Various refactorings of the diagnostic derive machinery (extracting `build_field_mapping` helper and moving `sess` field out of the `DiagnosticDeriveBuilder`).
- Introduce a `LintDiagnostic` derive macro that works almost exactly like the `SessionDiagnostic` derive macro except that it derives a `DecorateLint` implementation instead. A new derive is necessary for this because `SessionDiagnostic` is intended for when the generated code creates the diagnostic. `AddToDiagnostic` could have been used but it would have required more changes to the lint machinery.
~~At time of opening this pull request, ignore all of the commits from #98624, it's just the last few commits that are new.~~
r? `@oli-obk`
Avoid some `&str` to `String` conversions with `MultiSpan::push_span_label`
This patch removes some`&str` to `String` conversions with `MultiSpan::push_span_label`.
Erase regions in New Abstract Consts
When an abstract const is constructed, we previously included lifetimes in the set of substitutes, so it was not able to unify two abstract consts if their lifetimes did not match but the values did, despite the values not depending on the lifetimes. This caused code that should have compiled to not compile.
Fixes#98452
r? ```@lcnr```
Currently, `search_for_structural_match_violation` constructs an `infcx`
from a `tcx` and then only uses the `tcx` within the `infcx`. This is
wasteful because `infcx` is a big type.
This commit changes it to use the `tcx` directly. When compiling
`pest-2.1.3`, this changes the memcpy stats reported by DHAT for a `check full`
build from this:
```
433,008,916 bytes (100%, 99,787.93/Minstr) in 2,148,668 blocks (100%, 495.17/Minstr), avg size 201.52 bytes
```
to this:
```
101,422,347 bytes (99.98%, 25,243.59/Minstr) in 1,318,407 blocks (99.96%, 328.15/Minstr), avg size 76.93 bytes
```
This translates to a 4.3% reduction in instruction counts.
Reverse folder hierarchy
#91318 introduced a trait for infallible folders distinct from the fallible version. For some reason (completely unfathomable to me now that I look at it with fresh eyes), the infallible trait was a supertrait of the fallible one: that is, all fallible folders were required to also be infallible. Moreover the `Error` associated type was defined on the infallible trait! It's so absurd that it has me questioning whether I was entirely sane.
This trait reverses the hierarchy, so that the fallible trait is a supertrait of the infallible one: all infallible folders are required to also be fallible (which is a trivial blanket implementation). This of course makes much more sense! It also enables the `Error` associated type to sit on the fallible trait, where it sensibly belongs.
There is one downside however: folders expose a `tcx` accessor method. Since the blanket fallible implementation for infallible folders only has access to a generic `F: TypeFolder`, we need that trait to expose such an accessor to which we can delegate. Alternatively it's possible to extract that accessor into a separate `HasTcx` trait (or similar) that would then be a supertrait of both the fallible and infallible folder traits: this would ensure that there's only one unambiguous `tcx` method, at the cost of a little additional boilerplate. If desired, I can submit that as a separate PR.
r? ````@jackh726````
Greatly improve error reporting for futures and generators in `note_obligation_cause_code`
Most futures don't go through this code path, because they're caught by
`maybe_note_obligation_cause_for_async_await`. But all generators do,
and `maybe_note` is imperfect and doesn't catch all futures. Improve the error message for those it misses.
At some point, we may want to consider unifying this with the code for `maybe_note_async_await`,
so that `async_await` notes all parent constraints, and `note_obligation` can point to yield points.
But both functions are quite complicated, and it's not clear to me how to combine them;
this seems like a good incremental improvement.
Helps with https://github.com/rust-lang/rust/issues/97332.
r? ``@estebank`` cc ``@eholk`` ``@compiler-errors``
#91318 introduced a trait for infallible folders distinct from the fallible version. For some reason (completely unfathomable to me now that I look at it with fresh eyes), the infallible trait was a supertrait of the fallible one: that is, all fallible folders were required to also be infallible. Moreover the `Error` associated type was defined on the infallible trait! It's so absurd that it has me questioning whether I was entirely sane.
This trait reverses the hierarchy, so that the fallible trait is a supertrait of the infallible one: all infallible folders are required to also be fallible (which is a trivial blanket implementation). This of course makes much more sense! It also enables the `Error` associated type to sit on the fallible trait, where it sensibly belongs.
There is one downside however: folders expose a `tcx` accessor method. Since the blanket fallible implementation for infallible folders only has access to a generic `F: TypeFolder`, we need that trait to expose such an accessor to which we can delegate. Alternatively it's possible to extract that accessor into a separate `HasTcx` trait (or similar) that would then be a supertrait of both the fallible and infallible folder traits: this would ensure that there's only one unambiguous `tcx` method, at the cost of a little additional boilerplate. If desired, I can submit that as a separate PR.
r? @jackh726
Add proper tracing spans to rustc_trait_selection::traits::error_reporting
While I was trying to figure out #97704 I did some of this to make the logs more legible, so I figured I'd do the whole module and open a PR with it. afaict this is an ongoing process in the compiler from the log->tracing transition? but lmk if there was a reason for the more verbose forms of logging as they are.
Also, for some of the functions with only one log in them, I put the function name as a message for that log instead of `#[instrument]`-ing the whole function with a span? but maybe the latter would actually be preferable, I'm not actually sure.
Most futures don't go through this code path, because they're caught by
`maybe_note_obligation_cause_for_async_await`. But all generators do,
and `maybe_note` is imperfect and doesn't catch all futures. Improve the error message for those it misses.
At some point, we may want to consider unifying this with the code for `maybe_note_async_await`,
so that `async_await` notes all parent constraints, and `note_obligation` can point to yield points.
But both functions are quite complicated, and it's not clear to me how to combine them;
this seems like a good incremental improvement.
Rename `impl_constness` to `constness`
The current code is a basis for `is_const_fn_raw`, and `impl_constness`
is no longer a valid name, which is previously used for determining the
constness of impls, and not items in general.
r? `@oli-obk`
The current code is a basis for `is_const_fn_raw`, and `impl_constness`
is no longer a valid name, which is previously used for determining the
constness of impls, and not items in general.
Make `ExprKind::Closure` a struct variant.
Simple refactor since we both need it to introduce additional fields in `ExprKind::Closure`.
r? ``@Aaron1011``
Rename the `ConstS::val` field as `kind`.
And likewise for the `Const::val` method.
Because its type is called `ConstKind`. Also `val` is a confusing name
because `ConstKind` is an enum with seven variants, one of which is
called `Value`. Also, this gives consistency with `TyS` and `PredicateS`
which have `kind` fields.
The commit also renames a few `Const` variables from `val` to `c`, to
avoid confusion with the `ConstKind::Value` variant.
r? `@BoxyUwU`
Remove RegionckMode in favor of calling new skip_region_resolution
Simple cleanup. We can skip a bunch of stuff for places where NLL does the region checking, so skip earlier.
r? rust-lang/types
And likewise for the `Const::val` method.
Because its type is called `ConstKind`. Also `val` is a confusing name
because `ConstKind` is an enum with seven variants, one of which is
called `Value`. Also, this gives consistency with `TyS` and `PredicateS`
which have `kind` fields.
The commit also renames a few `Const` variables from `val` to `c`, to
avoid confusion with the `ConstKind::Value` variant.
Remove unwrap from get_vtable
This avoids ICE on issue #97381 I think the bug is a bit deeper though, it compiles fine when `v` is `&v` which makes me think `Deref` is causing some issue with borrowck but it's fine I guess since this thing crashes since `nightly-2020-09-17` 😅
This commit makes type folding more like the way chalk does it.
Currently, `TypeFoldable` has `fold_with` and `super_fold_with` methods.
- `fold_with` is the standard entry point, and defaults to calling
`super_fold_with`.
- `super_fold_with` does the actual work of traversing a type.
- For a few types of interest (`Ty`, `Region`, etc.) `fold_with` instead
calls into a `TypeFolder`, which can then call back into
`super_fold_with`.
With the new approach, `TypeFoldable` has `fold_with` and
`TypeSuperFoldable` has `super_fold_with`.
- `fold_with` is still the standard entry point, *and* it does the
actual work of traversing a type, for all types except types of
interest.
- `super_fold_with` is only implemented for the types of interest.
Benefits of the new model.
- I find it easier to understand. The distinction between types of
interest and other types is clearer, and `super_fold_with` doesn't
exist for most types.
- With the current model is easy to get confused and implement a
`super_fold_with` method that should be left defaulted. (Some of the
precursor commits fixed such cases.)
- With the current model it's easy to call `super_fold_with` within
`TypeFolder` impls where `fold_with` should be called. The new
approach makes this mistake impossible, and this commit fixes a number
of such cases.
- It's potentially faster, because it avoids the `fold_with` ->
`super_fold_with` call in all cases except types of interest. A lot of
the time the compile would inline those away, but not necessarily
always.
Do `suggest_await_before_try` with infer variables in self, and clean up binders
Fixes#97704
Also cleans up binders in this fn, since everything is a `Poly*` and we really shouldn't have stray escaping late-bound regions everywhere. That's why the function changed so much. This isn't necessary, so I can revert if necessary.
Because it really has two halves:
- A read-only part that checks if further work is needed.
- The further work part, which is much less hot.
This makes things a bit clearer and nicer.
Replace `&Vec<_>`s with `&[_]`s
It's generally preferable to use `&[_]` since it's one less indirection and it can be created from types other that `Vec`.
I've left `&Vec` in some locals where it doesn't really matter, in cases where `TypeFoldable` is expected (`TypeFoldable: Clone` so slice can't implement it) and in cases where it's `&TypeAliasThatIsActiallyVec`. Nothing important, really, I was just a little annoyed by `visit_generic_param_vec` :D
r? `@compiler-errors`
Finish bumping stage0
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
This now brings us to cfg-clean, with the exception of check-cfg-features in bootstrap;
I'd prefer to leave that for a separate PR at this time since it's likely to be more tricky.
cc https://github.com/rust-lang/rust/pull/97147#issuecomment-1132845061
r? `@pietroalbini`
It looks like the last time had left some remaining cfg's -- which made me think
that the stage0 bump was actually successful. This brings us to a released 1.62
beta though.
Move various checks to typeck so them failing causes the typeck result to get tainted
Fixes#69487fixes#79047
cc `@RalfJung` this gets rid of the `Transmute` invalid program error variant
Output correct type responsible for structural match violation
Previously we included the outermost type that caused a structural match violation in the error message and stated that that type must be annotated with `#[derive(Eq, PartialEq)]` even if it already had that annotation. This PR outputs the correct type in the error message.
Fixes https://github.com/rust-lang/rust/issues/97278
RFC3239: Implement `cfg(target)` - Part 2
This pull-request implements the compact `cfg(target(..))` part of [RFC 3239](https://github.com/rust-lang/rust/issues/96901).
I recommend reviewing this PR on a per commit basics, because of some moving parts.
cc `@GuillaumeGomez`
r? `@petrochenkov`
add a deep fast_reject routine
continues the work on #97136.
r? `@nnethercote`
Actually agree with you on the match structure 😆 let's see how that impacted perf 😅
`match_impl` has two call sites. For one of them (within `rematch_impl`)
the fast reject test isn't necessary, because any rejection would
represent a compiler bug.
This commit moves the fast reject test to the other `match_impl` call
site, in `assemble_candidates_from_impls`. This lets us move the fast
reject test outside the `probe` call in that function. This avoids the
taking of useless snapshots when the fast reject test succeeds, which
gives a performance win when compiling the `bitmaps` and `nalgebra`
crates.
Co-authored-by: name <n.nethercote@gmail.com>
Move a bunch of branches together into one if block, for easier reading.
Resolve comments
Attempt to make some branches unreachable [tmp]
Revert unreachable branches
`simplify_type` improvements and cursed docs
the existing `TreatParams` enum pretty much mixes everything up. Not sure why this looked right to me in #94057
This also includes two changes which impact perf:
- `ty::Projection` with inference vars shouldn't be treated as a rigid type, even if fully normalized
- `ty::Placeholder` only unifies with itself, so actually return `Some` for them
r? `@nikomatsakis`
Clean fix for #96223
Okay, so here we are (hopefully) 👍Closes#96223
Thanks a lot to `@jackh726` for your help and explanation 🙏
- Modified `InferCtxt::mk_trait_obligation_with_new_self_ty` to take as argument a `Binder<(TraitPredicate, Ty)>` instead of a `Binder<TraitPredicate>` and a separate `Ty` with no bound vars.
- Modified all call places to avoid calling `Binder::no_bounds_var` or `Binder::skip_binder` when it is not safe.
r? `@jackh726`
- Modified `InferCtxt::mk_trait_obligation_with_new_self_ty` to take as
argument a `Binder<(TraitPredicate, Ty)>` instead of a
`Binder<TraitPredicate>` and a separate `Ty` with no bound vars.
- Modified all call places to avoid calling `Binder::no_bounds_var` or
`Binder::skip_binder` when it is not safe.
Add EarlyBinder
Chalk has no concept of `Param` (e0ade19d13/chalk-ir/src/lib.rs (L579)) or `ReEarlyBound` (e0ade19d13/chalk-ir/src/lib.rs (L1308)). Everything is just "bound" - the equivalent of rustc's late-bound. It's not completely clear yet whether to move everything to the same time of binder in rustc or add `Param` and `ReEarlyBound` in Chalk.
Either way, tracking when we have or haven't already substituted out these in rustc can be helpful.
As a first step, I'm just adding a `EarlyBinder` newtype that is required to call `subst`. I also add a couple "transparent" `bound_*` wrappers around a couple query that are often immediately substituted.
r? `@nikomatsakis`
don't encode only locally used attrs
Part of https://github.com/rust-lang/compiler-team/issues/505.
We now filter builtin attributes before encoding them in the crate metadata in case they should only be used in the local crate. To prevent accidental misuse `get_attrs` now requires the caller to state which attribute they are interested in. For places where that isn't trivially possible, I've added a method `fn get_attrs_unchecked` which I intend to remove in a followup PR.
After this pull request landed, we can then slowly move all attributes to only be used in the local crate while being certain that we don't accidentally try to access them from extern crates.
cc https://github.com/rust-lang/rust/pull/94963#issuecomment-1082924289
Check hidden types for well formedness at the definition site instead of only at the opaque type itself
work towards #90409 . We'll need to look into closure and generator bodies of closures and generators nested inside the hidden type in order to fix that. In hindsight this PR is not necessary for that, but it may be a bit easier with it and we'll get better diagnostics from it on its own.
Fortify handing of where bounds on trait & trait alias definitions
Closes https://github.com/rust-lang/rust/issues/96664
Closes https://github.com/rust-lang/rust/issues/96665
Since https://github.com/rust-lang/rust/pull/93803, when listing all bounds and predicates we now need to account for the possible presence of predicates on any of the generic parameters. Both bugs were hidden by the special handling of bounds at the generic parameter declaration position.
Trait alias expansion used to confuse predicates on `Self` and where predicates.
Exiting too late when listing all the bounds caused a cycle error.
Begin fixing all the broken doctests in `compiler/`
Begins to fix#95994.
All of them pass now but 24 of them I've marked with `ignore HELP (<explanation>)` (asking for help) as I'm unsure how to get them to work / if we should leave them as they are.
There are also a few that I marked `ignore` that could maybe be made to work but seem less important.
Each `ignore` has a rough "reason" for ignoring after it parentheses, with
- `(pseudo-rust)` meaning "mostly rust-like but contains foreign syntax"
- `(illustrative)` a somewhat catchall for either a fragment of rust that doesn't stand on its own (like a lone type), or abbreviated rust with ellipses and undeclared types that would get too cluttered if made compile-worthy.
- `(not-rust)` stuff that isn't rust but benefits from the syntax highlighting, like MIR.
- `(internal)` uses `rustc_*` code which would be difficult to make work with the testing setup.
Those reason notes are a bit inconsistently applied and messy though. If that's important I can go through them again and try a more principled approach. When I run `rg '```ignore \(' .` on the repo, there look to be lots of different conventions other people have used for this sort of thing. I could try unifying them all if that would be helpful.
I'm not sure if there was a better existing way to do this but I wrote my own script to help me run all the doctests and wade through the output. If that would be useful to anyone else, I put it here: https://github.com/Elliot-Roberts/rust_doctest_fixing_tool
Fixes#96319
The logic around handling co-inductive cycles in the evaluation cache
is confusing and error prone. Fortunately, a perf run showed that it
doesn't actually appear to improve performance, so we can simplify
this code (and eliminate a source of ICEs) by just skipping caching
the evaluation results for co-inductive cycle participants.
This commit makes no changes to any of the other logic around
co-inductive cycle handling. Thus, while this commit could
potentially expose latent bugs that were being hidden by
caching, it should not introduce any new bugs.
Revert "Prefer projection candidates instead of param_env candidates for Sized predicates"
Fixes#93262Reopens#89352
This was a hack that seemed to have no negative side-effects at the time. Given that the latter has a workaround and likely less common than the former, it makes sense to revert this change.
r? `@compiler-errors`
Quick fix for #96223.
This PR is a quick fix regarding #96223.
As mentioned in the issue, others modification could be added to not elide types with bound vars from suggestions.
Special thanks to ``@jackh726`` for mentoring and ``@Manishearth`` for minimal test case.
r? ``@jackh726``
Only crate root def-ids don't have a parent, and in majority of cases the argument of `DefIdTree::parent` cannot be a crate root.
So we now panic by default in `parent` and introduce a new non-panicing function `opt_parent` for cases where the argument can be a crate root.
Same applies to `local_parent`/`opt_local_parent`.
Enforce Copy bounds for repeat elements while considering lifetimes
fixes https://github.com/rust-lang/rust/issues/95477
this is a breaking change in order to fix a soundness bug.
Before this PR we only checked whether the repeat element type had an `impl Copy`, but not whether that impl also had the appropriate lifetimes. E.g. if the impl was for `YourType<'static>` and not a general `'a`, then copying any type other than a `'static` one should have been rejected, but wasn't.
r? `@lcnr`
Implement Valtree to ConstValue conversion
Once we start to use `ValTree`s in the type system we will need to be able to convert them into `ConstValue` instances, which we want to continue to use after MIR construction.
r? `@oli-obk`
cc `@RalfJung`