This new SVH is used to uniquely identify all crates as a snapshot in time of
their ABI/API/publicly reachable state. This current calculation is just a hash
of the entire crate's AST. This is obviously incorrect, but it is currently the
reality for today.
This change threads through the new Svh structure which originates from crate
dependencies. The concept of crate id hash is preserved to provide efficient
matching on filenames for crate loading. The inspected hash once crate metadata
is opened has been changed to use the new Svh.
The goal of this hash is to identify when upstream crates have changed but
downstream crates have not been recompiled. This will prevent the def-id drift
problem where upstream crates were recompiled, thereby changing their metadata,
but downstream crates were not recompiled.
In the future this hash can be expanded to exclude contents of the AST like doc
comments, but limitations in the compiler prevent this change from being made at
this time.
Closes#10207
This updates a number of ignore-test tests, and removes a few completely
outdated tests due to the feature being tested no longer being supported.
This brings a number of bench/shootout tests up to date so they're compiling
again. I make no claims to the performance of these benchmarks, it's just nice
to not have bitrotted code.
Closes#2604Closes#9407
This commit removes deriving(ToStr) in favor of deriving(Show), migrating all impls of ToStr to fmt::Show.
Most of the details can be found in the first commit message.
Closes#12477
This commit changes the ToStr trait to:
impl<T: fmt::Show> ToStr for T {
fn to_str(&self) -> ~str { format!("{}", *self) }
}
The ToStr trait has been on the chopping block for quite awhile now, and this is
the final nail in its coffin. The trait and the corresponding method are not
being removed as part of this commit, but rather any implementations of the
`ToStr` trait are being forbidden because of the generic impl. The new way to
get the `to_str()` method to work is to implement `fmt::Show`.
Formatting into a `&mut Writer` (as `format!` does) is much more efficient than
`ToStr` when building up large strings. The `ToStr` trait forces many
intermediate allocations to be made while the `fmt::Show` trait allows
incremental buildup in the same heap allocated buffer. Additionally, the
`fmt::Show` trait is much more extensible in terms of interoperation with other
`Writer` instances and in more situations. By design the `ToStr` trait requires
at least one allocation whereas the `fmt::Show` trait does not require any
allocations.
Closes#8242Closes#9806
With the stability attributes we can put public-but unstable modules next to others, so this moves `intrinsics` and `raw` out of the `unstable` module (and marks both as `#[experimental]`).
These two containers are indeed collections, so their place is in
libcollections, not in libstd. There will always be a hash map as part of the
standard distribution of Rust, but by moving it out of the standard library it
makes libstd that much more portable to more platforms and environments.
This conveniently also removes the stuttering of 'std::hashmap::HashMap',
although 'collections::HashMap' is only one character shorter.
This commit rewrites crate loading internally in attempt to look at less
metadata and provide nicer errors. The loading is now split up into a few
stages:
1. Collect a mapping of (hash => ~[Path]) for a set of candidate libraries for a
given search. The hash is the hash in the filename and the Path is the
location of the library in question. All candidates are filtered based on
their prefix/suffix (dylib/rlib appropriate) and then the hash/version are
split up and are compared (if necessary).
This means that if you're looking for an exact hash of library you don't have
to open up the metadata of all libraries named the same, but also in your
path.
2. Once this mapping is constructed, each (hash, ~[Path]) pair is filtered down
to just a Path. This is necessary because the same rlib could show up twice
in the path in multiple locations. Right now the filenames are based on just
the crate id, so this could be indicative of multiple version of a crate
during one crate_id lifetime in the path. If multiple duplicate crates are
found, an error is generated.
3. Now that we have a mapping of (hash => Path), we error on multiple versions
saying that multiple versions were found. Only if there's one (hash => Path)
pair do we actually return that Path and its metadata.
With this restructuring, it restructures code so errors which were assertions
previously are now first-class errors. Additionally, this should read much less
metadata with lots of crates of the same name or same version in a path.
Closes#11908
The new methodology can be found in the re-worded comment, but the gist of it is
that -C prefer-dynamic doesn't turn off static linkage. The error messages
should also be a little more sane now.
Closes#12133
Externally loaded libraries are able to do things that cause references
to them to survive past the expansion phase (e.g. creating @-box cycles,
launching a task or storing something in task local data). As such, the
library has to stay loaded for the lifetime of the process.
This has been a long time coming. Conditions in rust were initially envisioned
as being a good alternative to error code return pattern. The idea is that all
errors are fatal-by-default, and you can opt-in to handling the error by
registering an error handler.
While sounding nice, conditions ended up having some unforseen shortcomings:
* Actually handling an error has some very awkward syntax:
let mut result = None;
let mut answer = None;
io::io_error::cond.trap(|e| { result = Some(e) }).inside(|| {
answer = Some(some_io_operation());
});
match result {
Some(err) => { /* hit an I/O error */ }
None => {
let answer = answer.unwrap();
/* deal with the result of I/O */
}
}
This pattern can certainly use functions like io::result, but at its core
actually handling conditions is fairly difficult
* The "zero value" of a function is often confusing. One of the main ideas
behind using conditions was to change the signature of I/O functions. Instead
of read_be_u32() returning a result, it returned a u32. Errors were notified
via a condition, and if you caught the condition you understood that the "zero
value" returned is actually a garbage value. These zero values are often
difficult to understand, however.
One case of this is the read_bytes() function. The function takes an integer
length of the amount of bytes to read, and returns an array of that size. The
array may actually be shorter, however, if an error occurred.
Another case is fs::stat(). The theoretical "zero value" is a blank stat
struct, but it's a little awkward to create and return a zero'd out stat
struct on a call to stat().
In general, the return value of functions that can raise error are much more
natural when using a Result as opposed to an always-usable zero-value.
* Conditions impose a necessary runtime requirement on *all* I/O. In theory I/O
is as simple as calling read() and write(), but using conditions imposed the
restriction that a rust local task was required if you wanted to catch errors
with I/O. While certainly an surmountable difficulty, this was always a bit of
a thorn in the side of conditions.
* Functions raising conditions are not always clear that they are raising
conditions. This suffers a similar problem to exceptions where you don't
actually know whether a function raises a condition or not. The documentation
likely explains, but if someone retroactively adds a condition to a function
there's nothing forcing upstream users to acknowledge a new point of task
failure.
* Libaries using I/O are not guaranteed to correctly raise on conditions when an
error occurs. In developing various I/O libraries, it's much easier to just
return `None` from a read rather than raising an error. The silent contract of
"don't raise on EOF" was a little difficult to understand and threw a wrench
into the answer of the question "when do I raise a condition?"
Many of these difficulties can be overcome through documentation, examples, and
general practice. In the end, all of these difficulties added together ended up
being too overwhelming and improving various aspects didn't end up helping that
much.
A result-based I/O error handling strategy also has shortcomings, but the
cognitive burden is much smaller. The tooling necessary to make this strategy as
usable as conditions were is much smaller than the tooling necessary for
conditions.
Perhaps conditions may manifest themselves as a future entity, but for now
we're going to remove them from the standard library.
Closes#9795Closes#8968
This has been a long time coming. Conditions in rust were initially envisioned
as being a good alternative to error code return pattern. The idea is that all
errors are fatal-by-default, and you can opt-in to handling the error by
registering an error handler.
While sounding nice, conditions ended up having some unforseen shortcomings:
* Actually handling an error has some very awkward syntax:
let mut result = None;
let mut answer = None;
io::io_error::cond.trap(|e| { result = Some(e) }).inside(|| {
answer = Some(some_io_operation());
});
match result {
Some(err) => { /* hit an I/O error */ }
None => {
let answer = answer.unwrap();
/* deal with the result of I/O */
}
}
This pattern can certainly use functions like io::result, but at its core
actually handling conditions is fairly difficult
* The "zero value" of a function is often confusing. One of the main ideas
behind using conditions was to change the signature of I/O functions. Instead
of read_be_u32() returning a result, it returned a u32. Errors were notified
via a condition, and if you caught the condition you understood that the "zero
value" returned is actually a garbage value. These zero values are often
difficult to understand, however.
One case of this is the read_bytes() function. The function takes an integer
length of the amount of bytes to read, and returns an array of that size. The
array may actually be shorter, however, if an error occurred.
Another case is fs::stat(). The theoretical "zero value" is a blank stat
struct, but it's a little awkward to create and return a zero'd out stat
struct on a call to stat().
In general, the return value of functions that can raise error are much more
natural when using a Result as opposed to an always-usable zero-value.
* Conditions impose a necessary runtime requirement on *all* I/O. In theory I/O
is as simple as calling read() and write(), but using conditions imposed the
restriction that a rust local task was required if you wanted to catch errors
with I/O. While certainly an surmountable difficulty, this was always a bit of
a thorn in the side of conditions.
* Functions raising conditions are not always clear that they are raising
conditions. This suffers a similar problem to exceptions where you don't
actually know whether a function raises a condition or not. The documentation
likely explains, but if someone retroactively adds a condition to a function
there's nothing forcing upstream users to acknowledge a new point of task
failure.
* Libaries using I/O are not guaranteed to correctly raise on conditions when an
error occurs. In developing various I/O libraries, it's much easier to just
return `None` from a read rather than raising an error. The silent contract of
"don't raise on EOF" was a little difficult to understand and threw a wrench
into the answer of the question "when do I raise a condition?"
Many of these difficulties can be overcome through documentation, examples, and
general practice. In the end, all of these difficulties added together ended up
being too overwhelming and improving various aspects didn't end up helping that
much.
A result-based I/O error handling strategy also has shortcomings, but the
cognitive burden is much smaller. The tooling necessary to make this strategy as
usable as conditions were is much smaller than the tooling necessary for
conditions.
Perhaps conditions may manifest themselves as a future entity, but for now
we're going to remove them from the standard library.
Closes#9795Closes#8968
This was the original intention of the privacy of structs, and it was
erroneously implemented before. A pub struct will now have default-pub fields,
and a non-pub struct will have default-priv fields. This essentially brings
struct fields in line with enum variants in terms of inheriting visibility.
As usual, extraneous modifiers to visibility are disallowed depend on the case
that you're dealing with.
Closes#11522
Now that procedural macros can be implemented outside of the compiler,
it's more important to have a reasonable API to work with. Here are the
basic changes:
* Rename SyntaxExpanderTTTrait to MacroExpander, SyntaxExpanderTT to
BasicMacroExpander, etc. I think "procedural macro" is the right
term for these now, right? The other option would be SynExtExpander
or something like that.
* Stop passing the SyntaxContext to extensions. This was only ever used
by macro_rules, which doesn't even use it anymore. I can't think of
a context in which an external extension would need it, and removal
allows the API to be significantly simpler - no more
SyntaxExpanderTTItemExpanderWithoutContext wrappers to worry about.
The new macro loading infrastructure needs the ability to force a
procedural-macro crate to be built with the host architecture rather than the
target architecture (because the compiler is just about to dlopen it).
The `print!` and `println!` macros are now the preferred method of printing, and so there is no reason to export the `stdio` functions in the prelude. The functions have also been replaced by their macro counterparts in the tutorial and other documentation so that newcomers don't get confused about what they should be using.
The comments have more information as to why this is done, but the basic idea is
that finding an exported trait is actually a fairly difficult problem. The true
answer lies in whether a trait is ever referenced from another exported method,
and right now this kind of analysis doesn't exist, so the conservative answer of
"yes" is always returned to answer whether a trait is exported.
Closes#11224Closes#11225