Guard against overflow in `codemap::span_to_lines`.
(Revised/expanded version of PR #24976)
Make `span_to_lines` to return a `Result`.
In `diagnostic`, catch `Err` from `span_to_lines` and print `"(unprintable span)"` instead.
----
There a number of recent issues that report the bug here. See e.g. #24761 and #24954.
This change *might* fix them. However, that is *not* its main goal. The main goals are:
1. Make it possible for callers to recover from an error here, and
2. Insert a more conservative check, in that we are also checking that the files match up.
----
As a drive-by, fix#24997 , which was causing my attempts to `make check-stage1` on an `--enable-debug` build to fail.
Make `span_to_lines` to return a `Result`.
(This is better than just asserting internally, since it allows caller
to decide if they can recover from the problem.)
Added type alias for `FileLinesResult` returned by `span_to_lines`.
Update embedded unit test to reflect `span_to_lines` signature change.
In diagnostic, catch `Err` from `span_to_lines` and print
`"(internal compiler error: unprintable span)"` instead.
----
There a number of recent issues that report the bug here. See
e.g. #24761 and #24954.
This change *might* fix them. However, that is not its main goal.
The main goals are:
1. Make it possible for callers to recover from an error here, and
2. Insert a more conservative check, in that we are
also checking that the files match up.
Changes the style guidelines regarding unit tests to recommend using a
sub-module named "tests" instead of "test" for unit tests as "test"
might clash with imports of libtest.
This commit removes all the old casting/generic traits from `std::num` that are
no longer in use by the standard library. This additionally removes the old
`strconv` module which has not seen much use in quite a long time. All generic
functionality has been supplanted with traits in the `num` crate and the
`strconv` module is supplanted with the [rust-strconv crate][rust-strconv].
[rust-strconv]: https://github.com/lifthrasiir/rust-strconv
This is a breaking change due to the removal of these deprecated crates, and the
alternative crates are listed above.
[breaking-change]
This permits all coercions to be performed in casts, but adds lints to warn in those cases.
Part of this patch moves cast checking to a later stage of type checking. We acquire obligations to check casts as part of type checking where we previously checked them. Once we have type checked a function or module, then we check any cast obligations which have been acquired. That means we have more type information available to check casts (this was crucial to making coercions work properly in place of some casts), but it means that casts cannot feed input into type inference.
[breaking change]
* Adds two new lints for trivial casts and trivial numeric casts, these are warn by default, but can cause errors if you build with warnings as errors. Previously, trivial numeric casts and casts to trait objects were allowed.
* The unused casts lint has gone.
* Interactions between casting and type inference have changed in subtle ways. Two ways this might manifest are:
- You may need to 'direct' casts more with extra type information, for example, in some cases where `foo as _ as T` succeeded, you may now need to specify the type for `_`
- Casts do not influence inference of integer types. E.g., the following used to type check:
```
let x = 42;
let y = &x as *const u32;
```
Because the cast would inform inference that `x` must have type `u32`. This no longer applies and the compiler will fallback to `i32` for `x` and thus there will be a type error in the cast. The solution is to add more type information:
```
let x: u32 = 42;
let y = &x as *const u32;
```
This commit:
* Introduces `std::convert`, providing an implementation of
RFC 529.
* Deprecates the `AsPath`, `AsOsStr`, and `IntoBytes` traits, all
in favor of the corresponding generic conversion traits.
Consequently, various IO APIs now take `AsRef<Path>` rather than
`AsPath`, and so on. Since the types provided by `std` implement both
traits, this should cause relatively little breakage.
* Deprecates many `from_foo` constructors in favor of `from`.
* Changes `PathBuf::new` to take no argument (creating an empty buffer,
as per convention). The previous behavior is now available as
`PathBuf::from`.
* De-stabilizes `IntoCow`. It's not clear whether we need this separate trait.
Closes#22751Closes#14433
[breaking-change]
Unstable items used in a macro expansion will now always trigger
stability warnings, *unless* the unstable items are directly inside a
macro marked with `#[allow_internal_unstable]`. IOW, the compiler warns
unless the span of the unstable item is a subspan of the definition of a
macro marked with that attribute.
E.g.
#[allow_internal_unstable]
macro_rules! foo {
($e: expr) => {{
$e;
unstable(); // no warning
only_called_by_foo!();
}}
}
macro_rules! only_called_by_foo {
() => { unstable() } // warning
}
foo!(unstable()) // warning
The unstable inside `foo` is fine, due to the attribute. But the
`unstable` inside `only_called_by_foo` is not, since that macro doesn't
have the attribute, and the `unstable` passed into `foo` is also not
fine since it isn't contained in the macro itself (that is, even though
it is only used directly in the macro).
In the process this makes the stability tracking much more precise,
e.g. previously `println!("{}", unstable())` got no warning, but now it
does. As such, this is a bug fix that may cause [breaking-change]s.
The attribute is definitely feature gated, since it explicitly allows
side-stepping the feature gating system.
This allows to create proper debuginfo line information for items inlined from other crates (e.g. instantiations of generics).
Only the codemap's 'metadata' is stored in a crate's metadata. That is, just filename, line-beginnings, etc. but not the actual source code itself. We are thus missing the opportunity of making Rust the first "open-source-only" programming language out there. Pity.
This can be considered partial work on #8256.
The main observable change: macro expansion sometimes results in spans
where `lo > hi`; so for now, when we have such a span, do not attempt
to return a snippet result.
(Longer term, we might think about whether we could still present a
snippet for the cases where this arises, e.g. perhaps by showing the
whole macro as the snippet, assuming that is the sole cause of such
spans; or by somehow looking up the closest AST node that holds both
`lo` and `hi`, and showing that.)
As a drive-by, revised the API to return a `Result` rather than an
`Option`, with better information-packed error value that should help
us (and maybe also our users) identify the causes of such problems in
the future. Ideally the call-sites that really want an actual snippet
would be updated to catch the newly added `Err` case and print
something meaningful about it, but that is not part of this PR.
This ends up propagating all the way out to the output of dep-info which then
makes Cargo think that files are not existent (it thinks the files have quotes
in their name) when they in fact do.
This partially implements the feature staging described in the
[release channel RFC][rc]. It does not yet fully conform to the RFC as
written, but does accomplish its goals sufficiently for the 1.0 alpha
release.
It has three primary user-visible effects:
* On the nightly channel, use of unstable APIs generates a warning.
* On the beta channel, use of unstable APIs generates a warning.
* On the beta channel, use of feature gates generates a warning.
Code that does not trigger these warnings is considered 'stable',
modulo pre-1.0 bugs.
Disabling the warnings for unstable APIs continues to be done in the
existing (i.e. old) style, via `#[allow(...)]`, not that specified in
the RFC. I deem this marginally acceptable since any code that must do
this is not using the stable dialect of Rust.
Use of feature gates is itself gated with the new 'unstable_features'
lint, on nightly set to 'allow', and on beta 'warn'.
The attribute scheme used here corresponds to an older version of the
RFC, with the `#[staged_api]` crate attribute toggling the staging
behavior of the stability attributes, but the user impact is only
in-tree so I'm not concerned about having to make design changes later
(and I may ultimately prefer the scheme here after all, with the
`#[staged_api]` crate attribute).
Since the Rust codebase itself makes use of unstable features the
compiler and build system to a midly elaborate dance to allow it to
bootstrap while disobeying these lints (which would otherwise be
errors because Rust builds with `-D warnings`).
This patch includes one significant hack that causes a
regression. Because the `format_args!` macro emits calls to unstable
APIs it would trigger the lint. I added a hack to the lint to make it
not trigger, but this in turn causes arguments to `println!` not to be
checked for feature gates. I don't presently understand macro
expansion well enough to fix. This is bug #20661.
Closes#16678
[rc]: https://github.com/rust-lang/rfcs/blob/master/text/0507-release-channels.md
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]
This commit moves the libserialize crate (and will force the hand of the
rustc-serialize crate) to not require the `old_orphan_check` feature gate as
well as using associated types wherever possible. Concretely, the following
changes were made:
* The error type of `Encoder` and `Decoder` is now an associated type, meaning
that these traits have no type parameters.
* The `Encoder` and `Decoder` type parameters on the `Encodable` and `Decodable`
traits have moved to the corresponding method of the trait. This movement
alleviates the dependency on `old_orphan_check` but implies that
implementations can no longer be specialized for the type of encoder/decoder
being implemented.
Due to the trait definitions changing, this is a:
[breaking-change]