Move all Linux/OSX CI infastructure to Travis
This commit configures our `.travis.yml` to test the full suite of tests we have
on Buildbot right now. A whole mess of docker images are added to the `src/ci`
directory which represent all the build environments for each configuration.
Each of these environments is then configured in `.travis.yml` to run on the
auto branch.
Note that the full matrix of tests aren't intended to be run on all PRs.
Instead, we continue to run only one entry in the matrix, forcing all others to
finish quickly. Only the `auto` branch should run the full matrix of builds.
Also note that the infrastructure hasn't quite been allocated yet to the
rust-lang/rust repository, so everything is disabled for now except for the one
build that happens on PRs. Once that infrastructure is allocated though we can
enable this and let it fly!
Notable modifications from the current test suite today:
* Android tests are run in rustbuild instead of the makefiles, for whatever
reason I couldn't get the makefiles to work on Travis.
* A debuginfo test was updated to work with the current version of the Android
NDK.
* Some dependencies in `mk/tests.mk` were fixed to allow running tests in
parallel.
This commit configures our `.travis.yml` to test the full suite of tests we have
on Buildbot right now. A whole mess of docker images are added to the `src/ci`
directory which represent all the build environments for each configuration.
Each of these environments is then configured in `.travis.yml` to run on the
auto branch.
Note that the full matrix of tests aren't intended to be run on all PRs.
Instead, we continue to run only one entry in the matrix, forcing all others to
finish quickly. Only the `auto` branch should run the full matrix of builds.
Also note that the infrastructure hasn't quite been allocated yet to the
rust-lang/rust repository, so everything is disabled for now except for the one
build that happens on PRs. Once that infrastructure is allocated though we can
enable this and let it fly!
Notable modifications from the current test suite today:
* Android tests are run in rustbuild instead of the makefiles, for whatever
reason I couldn't get the makefiles to work on Travis.
* A debuginfo test was updated to work with the current version of the Android
NDK.
* Some dependencies in `mk/tests.mk` were fixed to allow running tests in
parallel.
A few changes are included here:
* The `winapi` and `url` dependencies were dropped. The source code for these
projects is pretty weighty, and we're about to vendor them, so let's not
commit to that intake just yet. If necessary we can vendor them later but for
now it shouldn't be necessary.
* The `--frozen` flag is now always passed to Cargo, obviating the need for
tidy's `cargo_lock` check.
* Tidy was updated to not check the vendor directory
Closes#34687
Support for aarch64 architecture on Fuchsia
This patch adds support for the aarch64-unknown-fuchsia target. Also
updates src/liblibc submodule to include required libc change.
Separate the plugin code from non-plugin code to break a potential cycle in crates.
This will allow us to merge the new libproc_macro_tokens into libproc_macro.
Enable line number debuginfo in releases
This commit enables by default passing the `-C debuginfo=1` argument to the
compiler for the stable, beta, and nightly release channels. A new configure
option was also added, `--enable-debuginfo-lines`, to enable this behavior in
developer builds as well.
Closes#36452
This commit enables by default passing the `-C debuginfo=1` argument to the
compiler for the stable, beta, and nightly release channels. A new configure
option was also added, `--enable-debuginfo-lines`, to enable this behavior in
developer builds as well.
Closes#36452
A new point-release shouldn't change any language semantics, so a local
stage0 that matches MAJOR.MINOR version should still be considered a
local-rebuild as far as `--cfg stageN` features go.
e.g. `1.14.0` should be considered a local-rebuild for any `1.14.X`.
(Bootstrap keys used to be an issue too, until #37265.)
Allow bootstrapping without a key. Fixes#36548
This will make it easier for packagers to bootstrap rustc when they happen
to have a bootstrap compiler with a slightly different version number.
It's not ok for anything other than the build system to set this environment variable.
r? @alexcrichton
This will make it easier for packagers to bootstrap rustc when they happen
to have a bootstrap compiler with a slightly different version number.
It's not ok for anything other than the build system to set this environment variable.
We hope to move to AppVeyor in the near future off of Buildbot + EC2. This adds
an `appveyor.yml` configuration file which is ready to run builds on the auto
branch. This is also accompanied with a few minor fixes to the build system and
such to accomodate AppVeyor.
The intention is that we're not switching over to AppVeyor entirely just yet,
but rather we'll watch the builds for a week or so. If everything checks out
then we'll start gating on AppVeyor instead of Buildbot!
This commit blanket renames the `rustc_macro` infrastructure to `proc_macro`,
which reflects the general consensus of #35900. A follow up PR to Cargo will be
required to purge the `rustc-macro` name as well.
mk: add a all-no-docs target to build everything except docs
This makes things slightly more efficient for Debian's auto-builders where the
docs can be built on just one architecture, and distributed to users of all
other architectures as well.
This makes things slightly more efficient for Debian's auto-builders where the
docs can be built on just one architecture, and distributed to users of all
other architectures as well.
libcompiler-rt.a is dead, long live libcompiler-builtins.rlib
This commit moves the logic that used to build libcompiler-rt.a into a
compiler-builtins crate on top of the core crate and below the std crate.
This new crate still compiles the compiler-rt instrinsics using gcc-rs
but produces an .rlib instead of a static library.
Also, with this commit rustc no longer passes -lcompiler-rt to the
linker. This effectively makes the "no-compiler-rt" field of target
specifications a no-op. Users of `no_std` will have to explicitly add
the compiler-builtins crate to their crate dependency graph *if* they
need the compiler-rt intrinsics. Users of the `std` have to do nothing
extra as the std crate depends on compiler-builtins.
Finally, this a step towards lazy compilation of std with Cargo as the
compiler-rt intrinsics can now be built by Cargo instead of having to
be supplied by the user by some other method.
closes#34400
Allow setting --docdir
This will allow setting `--docdir` during configure, this is useful because not all linux distributions install documentation to `/usr/share/doc`. For example in Slackware documentation is installed to `/usr/doc/$PRGNAM-$VERSION` and `/usr/share/doc` is a symlink to `/usr/doc`.
To use this `./configure --docdir=/usr/doc/$PRGNAM-$VERSION` can be used.
This adds support for building the Rust compiler and standard
library for s390x-linux, allowing a full cross-bootstrap sequence
to complete. This includes:
- Makefile/configure changes to allow native s390x builds
- Full Rust compiler support for the s390x C ABI
(only the non-vector ABI is supported at this point)
- Port of the standard library to s390x
- Update the liblibc submodule to a version including s390x support
- Testsuite fixes to allow clean "make check" on s390x
Caveats:
- Resets base cpu to "z10" to bring support in sync with the default
behaviour of other compilers on the platforms. (Usually, upstream
supports all older processors; a distribution build may then chose
to require a more recent base version.) (Also, using zEC12 causes
failures in the valgrind tests since valgrind doesn't fully support
this CPU yet.)
- z13 vector ABI is not yet supported. To ensure compatible code
generation, the -vector feature is passed to LLVM. Note that this
means that even when compiling for z13, no vector instructions
will be used. In the future, support for the vector ABI should be
added (this will require common code support for different ABIs
that need different data_layout strings on the same platform).
- Two test cases are (temporarily) ignored on s390x to allow passing
the test suite. The underlying issues still need to be fixed:
* debuginfo/simd.rs fails because of incorrect debug information.
This seems to be a LLVM bug (also seen with C code).
* run-pass/union/union-basic.rs simply seems to be incorrect for
all big-endian platforms.
Signed-off-by: Ulrich Weigand <ulrich.weigand@de.ibm.com>
rustc: Implement custom derive (macros 1.1)
This commit is an implementation of [RFC 1681] which adds support to the
compiler for first-class user-define custom `#[derive]` modes with a far more
stable API than plugins have today.
[RFC 1681]: https://github.com/rust-lang/rfcs/blob/master/text/1681-macros-1.1.md
The main features added by this commit are:
* A new `rustc-macro` crate-type. This crate type represents one which will
provide custom `derive` implementations and perhaps eventually flower into the
implementation of macros 2.0 as well.
* A new `rustc_macro` crate in the standard distribution. This crate will
provide the runtime interface between macro crates and the compiler. The API
here is particularly conservative right now but has quite a bit of room to
expand into any manner of APIs required by macro authors.
* The ability to load new derive modes through the `#[macro_use]` annotations on
other crates.
All support added here is gated behind the `rustc_macro` feature gate, both for
the library support (the `rustc_macro` crate) as well as the language features.
There are a few minor differences from the implementation outlined in the RFC,
such as the `rustc_macro` crate being available as a dylib and all symbols are
`dlsym`'d directly instead of having a shim compiled. These should only affect
the implementation, however, not the public interface.
This commit also ended up touching a lot of code related to `#[derive]`, making
a few notable changes:
* Recognized derive attributes are no longer desugared to `derive_Foo`. Wasn't
sure how to keep this behavior and *not* expose it to custom derive.
* Derive attributes no longer have access to unstable features by default, they
have to opt in on a granular level.
* The `derive(Copy,Clone)` optimization is now done through another "obscure
attribute" which is just intended to ferry along in the compiler that such an
optimization is possible. The `derive(PartialEq,Eq)` optimization was also
updated to do something similar.
---
One part of this PR which needs to be improved before stabilizing are the errors
and exact interfaces here. The error messages are relatively poor quality and
there are surprising spects of this such as `#[derive(PartialEq, Eq, MyTrait)]`
not working by default. The custom attributes added by the compiler end up
becoming unstable again when going through a custom impl.
Hopefully though this is enough to start allowing experimentation on crates.io!
test: Add a min-llvm-version directive
We've got tests which require a particular version of LLVM to run as they're
testing bug fixes. Our build system, however, supports multiple LLVM versions,
so we can't run these tests on all LLVM versions.
This adds a new `min-llvm-version` directive for tests so they can opt out of
being run on older versions of LLVM. This then namely applies that logic to the
`issue-36023.rs` test case and...
Closes#36138
This commit is an implementation of [RFC 1681] which adds support to the
compiler for first-class user-define custom `#[derive]` modes with a far more
stable API than plugins have today.
[RFC 1681]: https://github.com/rust-lang/rfcs/blob/master/text/1681-macros-1.1.md
The main features added by this commit are:
* A new `rustc-macro` crate-type. This crate type represents one which will
provide custom `derive` implementations and perhaps eventually flower into the
implementation of macros 2.0 as well.
* A new `rustc_macro` crate in the standard distribution. This crate will
provide the runtime interface between macro crates and the compiler. The API
here is particularly conservative right now but has quite a bit of room to
expand into any manner of APIs required by macro authors.
* The ability to load new derive modes through the `#[macro_use]` annotations on
other crates.
All support added here is gated behind the `rustc_macro` feature gate, both for
the library support (the `rustc_macro` crate) as well as the language features.
There are a few minor differences from the implementation outlined in the RFC,
such as the `rustc_macro` crate being available as a dylib and all symbols are
`dlsym`'d directly instead of having a shim compiled. These should only affect
the implementation, however, not the public interface.
This commit also ended up touching a lot of code related to `#[derive]`, making
a few notable changes:
* Recognized derive attributes are no longer desugared to `derive_Foo`. Wasn't
sure how to keep this behavior and *not* expose it to custom derive.
* Derive attributes no longer have access to unstable features by default, they
have to opt in on a granular level.
* The `derive(Copy,Clone)` optimization is now done through another "obscure
attribute" which is just intended to ferry along in the compiler that such an
optimization is possible. The `derive(PartialEq,Eq)` optimization was also
updated to do something similar.
---
One part of this PR which needs to be improved before stabilizing are the errors
and exact interfaces here. The error messages are relatively poor quality and
there are surprising spects of this such as `#[derive(PartialEq, Eq, MyTrait)]`
not working by default. The custom attributes added by the compiler end up
becoming unstable again when going through a custom impl.
Hopefully though this is enough to start allowing experimentation on crates.io!
syntax-[breaking-change]
add mips64-gnu and mips64el-gnu targets
With this commit one can build no_core (and probably no_std as well)
Rust programs for these targets. It's not yet possible to cross compile
std for these targets because rust-lang/libc doesn't know about the
mips64 architecture.
These targets have been tested by cross compiling the "smallest hello"
program (see code below) and then running it under QEMU.
``` rust
extern {
fn puts(_: *const u8);
}
fn start(_: isize, _: *const *const u8) -> isize {
unsafe {
let msg = b"Hello, world!\0";
puts(msg as *const _ as *const u8);
}
0
}
trait Copy {}
trait Sized {}
```
cc #36015
r? @alexcrichton
cc @brson
The cabi stuff is likely wrong. I just copied cabi_mips source and changed some `4`s to `8`s and `32`s to `64`s. It was enough to get libc's `puts` to work but I'd like someone familiar with this module to check it.
We've got tests which require a particular version of LLVM to run as they're
testing bug fixes. Our build system, however, supports multiple LLVM versions,
so we can't run these tests on all LLVM versions.
This adds a new `min-llvm-version` directive for tests so they can opt out of
being run on older versions of LLVM. This then namely applies that logic to the
`issue-36023.rs` test case and...
Closes#36138
Implement synchronization scheme for incr. comp. directory
This PR implements a copy-on-write-based synchronization scheme for the incremental compilation cache directory. For technical details, see the documentation at the beginning of `rustc_incremental/persist/fs.rs`.
The PR contains unit tests for some functions but for testing whether the scheme properly handles races, a more elaborate test setup would be needed. It would probably involve a small tool that allows to manipulate the incremental compilation directory in a controlled way and then letting a compiler instance run against directories in different states. I don't know if it's worth the trouble of adding another test category to `compiletest`, but I'd be happy to do so.
Fixes#32754Fixes#34957