groundwork for better performance.
Key points:
- Separate out determining which method to use from actually selecting
a method (this should enable caching, as well as the pcwalton fast-reject strategy).
- Merge the impl selection back into method resolution and don't rely on
trait matching (this should perform better but also is needed to resolve some
kind of conflicts, see e.g. `method-two-traits-distinguished-via-where-clause.rs`)
- Purge a lot of out-of-date junk and coercions from method lookups.
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
This implements a considerable portion of rust-lang/rfcs#369 (tracked in #18640). Some interpretations had to be made in order to get this to work. The breaking changes are listed below:
[breaking-change]
- `core::num::{Num, Unsigned, Primitive}` have been deprecated and their re-exports removed from the `{std, core}::prelude`.
- `core::num::{Zero, One, Bounded}` have been deprecated. Use the static methods on `core::num::{Float, Int}` instead. There is no equivalent to `Zero::is_zero`. Use `(==)` with `{Float, Int}::zero` instead.
- `Signed::abs_sub` has been moved to `std::num::FloatMath`, and is no longer implemented for signed integers.
- `core::num::Signed` has been removed, and its methods have been moved to `core::num::Float` and a new trait, `core::num::SignedInt`. The methods now take the `self` parameter by value.
- `core::num::{Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv}` have been removed, and their methods moved to `core::num::Int`. Their parameters are now taken by value. This means that
- `std::time::Duration` no longer implements `core::num::{Zero, CheckedAdd, CheckedSub}` instead defining the required methods non-polymorphically.
- `core::num::{zero, one, abs, signum}` have been deprecated. Use their respective methods instead.
- The `core::num::{next_power_of_two, is_power_of_two, checked_next_power_of_two}` functions have been deprecated in favor of methods defined a new trait, `core::num::UnsignedInt`
- `core::iter::{AdditiveIterator, MultiplicativeIterator}` are now only implemented for the built-in numeric types.
- `core::iter::{range, range_inclusive, range_step, range_step_inclusive}` now require `core::num::Int` to be implemented for the type they a re parametrized over.
This patch tweaks the stability inheritance infrastructure so that
`#{stable]` attributes are not inherited. Doing so solves two problems:
1. It allows us to mark module *names* as stable without accidentally
marking the items they contain as stable.
2. It means that a `#[stable]` attribution must always appear directly
on the item it applies to, which makes it easier for reviewers to catch
changes to stable APIs.
Fixes#17484
Adds a method for printing a fatal error and also a help message to the
parser and uses this in a variety of places to improve error messages.
Closes#12213.
This commit deprecates the entire libtime library in favor of the
externally-provided libtime in the rust-lang organization. Users of the
`libtime` crate as-is today should add this to their Cargo manifests:
[dependencies.time]
git = "https://github.com/rust-lang/time"
To implement this transition, a new function `Duration::span` was added to the
`std::time::Duration` time. This function takes a closure and then returns the
duration of time it took that closure to execute. This interface will likely
improve with `FnOnce` unboxed closures as moving in and out will be a little
easier.
Due to the deprecation of the in-tree crate, this is a:
[breaking-change]
cc #18855, some of the conversions in the `src/test/bench` area may have been a
little nicer with that implemented
Various miscellaneous changes pushing towards HRTB support:
1. Update parser and adjust ast to support `for<'a,'b>` syntax, both in closures and trait bounds. Warn on the old syntax (not error, for stage0).
2. Refactor TyTrait representation to include a TraitRef.
3. Purge `once_fns` feature gate and `once` keyword.
r? @pcwalton
This is a [breaking-change]:
- The `once_fns` feature is now officially deprecated. Rewrite using normal closures or unboxed closures.
- The new `for`-based syntax now issues warnings (but not yet errors):
- `fn<'a>(T) -> U` becomes `for<'a> fn(T) -> U`
- `<'a> |T| -> U` becomes `for<'a> |T| -> U`
This commit implements processing these two attributes at the crate level as
well as at the item level. When #[cfg] is applied at the crate level, then the
entire crate will be omitted if the cfg doesn't match. The #[cfg_attr] attribute
is processed as usual in that the attribute is included or not depending on
whether the cfg matches.
This was spurred on by motivations of #18585 where #[cfg_attr] annotations will
be applied at the crate-level.
cc #18585
This commit implements processing these two attributes at the crate level as
well as at the item level. When #[cfg] is applied at the crate level, then the
entire crate will be omitted if the cfg doesn't match. The #[cfg_attr] attribute
is processed as usual in that the attribute is included or not depending on
whether the cfg matches.
This was spurred on by motivations of #18585 where #[cfg_attr] annotations will
be applied at the crate-level.
cc #18585
Fixes#18567. `Struct{x:foo, .. with_expr}` did not walk `with_expr`, which allowed
using moved variables in some cases. The CFG for structs also built up with
`with_expr` happening before the fields, which is now reversed. (Fields are now
before the `with_expr` in the CFG)
Fixes#18567. Struct{x:foo, .. with_expr} did not walk with_expr, which allowed
using moved variables in some cases. The CFG for structs also built up with
with_expr happening before the fields, which is now reversed. (Fields are now
before the with_expr in the CFG)
This commit adds support for linting `extern crate` statements for stability
attributes attached to the crate itself. This is likely to be the mechanism used
to deny access to experimental crates that are part of the standard
distribution.
cc #18585
r? @aturon
`eq`, `ne`, `cmp`, etc methods now require one less level of indirection when dealing with `&str`/`&[T]`
``` rust
"foo".ne(&"bar") -> "foo".ne("bar")
slice.cmp(&another_slice) -> slice.cmp(another_slice)
// slice and another_slice have type `&[T]`
```
[breaking-change]
Key points are:
1. `a + b` maps directly to `Add<A,B>`, where `A` and `B` are the types of `a` and `b`.
2. Indexing and slicing autoderefs consistently.
Unicode characters and strings.
Use `\u0080`-`\u00ff` instead. ASCII/byte literals are unaffected.
This PR introduces a new function, `escape_default`, into the ASCII
module. This was necessary for the pretty printer to continue to
function.
RFC #326.
Closes#18062.
[breaking-change]
This commit adds support for linting `extern crate` statements for stability
attributes attached to the crate itself. This is likely to be the mechanism used
to deny access to experimental crates that are part of the standard
distribution.
cc #18585
Closes#18126.
At the moment this mostly only changes notes that are particularly help-oriented or directly suggest the user to do something to help messages, and does not change messages that simply explain an error message further. If it is decided that those messages should also be help messages, I can add them to this PR, but for now I’m excluding them as I believe that changing those messages might leave very few places where notes would be appropriate.
Add lint for checking exceeding bitshifts #17713
It also const-evaluates the shift width (RHS) to check more complex shifts like `1u8 << (4+5)`.
The lint-level is set to `Warn` but perhaps it must be `Deny` as in llvm exceeding bitshifts are undefined as @ben0x539 stated in #17713
As part of the collections reform RFC, this commit removes all collections
traits in favor of inherent methods on collections themselves. All methods
should continue to be available on all collections.
This is a breaking change with all of the collections traits being removed and
no longer being in the prelude. In order to update old code you should move the
trait implementations to inherent implementations directly on the type itself.
Note that some traits had default methods which will also need to be implemented
to maintain backwards compatibility.
[breaking-change]
cc #18424
This PR aims to improve the readability of diagnostic messages that involve unresolved type variables. Currently, messages like the following:
```rust
mismatched types: expected `core::result::Result<uint,()>`, found `core::option::Option<<generic #1>>`
<anon>:6 let a: Result<uint, ()> = None;
^~~~
mismatched types: expected `&mut <generic #2>`, found `uint`
<anon>:7 f(42u);
^~~
```
tend to appear unapproachable to new users. [0] While specific type var IDs are valuable in
diagnostics that deal with more than one such variable, in practice many messages
only mention one. In those cases, leaving out the specific number makes the messages
slightly less terrifying.
```rust
mismatched types: expected `core::result::Result<uint, ()>`, found `core::option::Option<_>`
<anon>:6 let a: Result<uint, ()> = None;
^~~~
mismatched types: expected `&mut _`, found `uint`
<anon>:7 f(42u);
^~~
```
As you can see, I also tweaked the aesthetics slightly by changing type variables to use the type hole syntax _. For integer variables, the syntax used is:
```rust
mismatched types: expected `core::result::Result<uint, ()>`, found `core::option::Option<_#1i>`
<anon>:6 let a: Result<uint, ()> = Some(1);
```
and float variables:
```rust
mismatched types: expected `core::result::Result<uint, ()>`, found `core::option::Option<_#1f>`
<anon>:6 let a: Result<uint, ()> = Some(0.5);
```
[0] https://twitter.com/coda/status/517713085465772032
Closes https://github.com/rust-lang/rust/issues/2632.
Closes https://github.com/rust-lang/rust/issues/3404.
Closes https://github.com/rust-lang/rust/issues/18426.
This is an implementation of the rustc bits of [RFC 403][rfc]. This adds a new
flag to the compiler, `-l`, as well as tweaking the `include!` macro (and
related source-centric macros).
The compiler's new `-l` flag is used to link libraries in from the command line.
This flag stacks with `#[link]` directives already found in the program. The
purpose of this flag, also stated in the RFC, is to ease linking against native
libraries which have wildly different requirements across platforms and even
within distributions of one platform. This flag accepts a string of the form
`NAME[:KIND]` where `KIND` is optional or one of dylib, static, or framework.
This is roughly equivalent to if the equivalent `#[link]` directive were just
written in the program.
The `include!` macro has been modified to recursively expand macros to allow
usage of `concat!` as an argument, for example. The use case spelled out in RFC
403 was for `env!` to be used as well to include compile-time generated files.
The macro also received a bit of tweaking to allow it to expand to either an
expression or a series of items, depending on what context it's used in.
[rfc]: https://github.com/rust-lang/rfcs/pull/403
The error messages still aren’t as good as they were before DST, but they better
describe the actual problem, not mentioning `Sized` at all (because that bound
is normally implied, not explicitly stated).
Closes#17567.
Closes#18040.
Closes#18159.
This commit adds the following impls:
impl<T> Deref<[T]> for Vec<T>
impl<T> DerefMut<[T]> for Vec<T>
impl Deref<str> for String
This commit also removes all duplicated inherent methods from vectors and
strings as implementations will now silently call through to the slice
implementation. Some breakage occurred at std and beneath due to inherent
methods removed in favor of those in the slice traits and std doesn't use its
own prelude,
cc #18424
This common representation for delimeters should make pattern matching easier. Having a separate `token::DelimToken` enum also allows us to enforce the invariant that the opening and closing delimiters must be the same in `ast::TtDelimited`, removing the need to ensure matched delimiters when working with token trees.
This includes updating the language items and marking what needs to
change after a snapshot.
If you do not use the standard library, the language items you need to
implement have changed. For example:
```rust
#[lang = "fail_fmt"] fn fail_fmt() -> ! { loop {} }
```
is now
```rust
#[lang = "panic_fmt"] fn panic_fmt() -> ! { loop {} }
```
Related, lesser-implemented language items `fail` and
`fail_bounds_check` have become `panic` and `panic_bounds_check`, as
well. These are implemented by `libcore`, so it is unlikely (though
possible!) that these two renamings will affect you.
[breaking-change]
Fix test suite
https://github.com/rust-lang/rfcs/pull/221
The current terminology of "task failure" often causes problems when
writing or speaking about code. You often want to talk about the
possibility of an operation that returns a Result "failing", but cannot
because of the ambiguity with task failure. Instead, you have to speak
of "the failing case" or "when the operation does not succeed" or other
circumlocutions.
Likewise, we use a "Failure" header in rustdoc to describe when
operations may fail the task, but it would often be helpful to separate
out a section describing the "Err-producing" case.
We have been steadily moving away from task failure and toward Result as
an error-handling mechanism, so we should optimize our terminology
accordingly: Result-producing functions should be easy to describe.
To update your code, rename any call to `fail!` to `panic!` instead.
Assuming you have not created your own macro named `panic!`, this
will work on UNIX based systems:
grep -lZR 'fail!' . | xargs -0 -l sed -i -e 's/fail!/panic!/g'
You can of course also do this by hand.
[breaking-change]
This is a large spring-cleaning commit now that the 0.12.0 release has passed removing an amount of deprecated functionality. This removes a number of deprecated crates (all still available as cargo packages in the rust-lang organization) as well as a slew of deprecated functions. All `#[crate_id]` support has also been removed.
I tried to avoid anything that was recently deprecated, but I may have missed something! The major pain points of this commit is the fact that rustc/syntax have `#[allow(deprecated)]`, but I've removed that annotation so moving forward they should be cleaned up as we go.
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]
Check object lifetime bounds in coercions, not just trait bounds. Fixes#18055.
r? @pcwalton
This is a [breaking change]. Change code like this:
fn foo(v: &[u8]) -> Box<Clone+'static> { ... }
to make the lifetimes agree:
// either...
fn foo(v: &'static[u8]) -> Box<Clone+'static> { box v }
// or ...
fn foo<'a>(v: &'a [u8]) -> Box<Clone+'a> { box v }
The representability-checking routine ```is_type_representable``` failed to detect structural recursion in some cases, leading to stack overflow later on.
The first problem was in the loop in the ```find_nonrepresentable``` function. We were improperly terminating the iteration if we saw a ```ContainsRecursive``` condition. We should have kept going in case a later member of the struct (or enum, etc) being examined was ```SelfRecursive```. The example from #17431 triggered this issue:
```rust
use std::sync::Mutex;
struct Foo { foo: Mutex<Option<Foo>> }
impl Foo { fn bar(self) {} }
fn main() {}
```
I'm not 100% sure, but I think the ```ty_enum``` case of ```fn type_structurally_recursive``` had a similar problem, since it could ```break``` on ```ContainsRecursive``` before looking at all variants. I've replaced this with a ```flat_map``` call.
The second problem was that we were failing to identify code like ```struct Foo { foo: Option<Option<Foo>> }``` as SelfRecursive, even though we correctly identified ```struct Foo { foo: Option<Foo> }```. This was caused by using DefId's for the ```ContainsRecursive``` check, which meant the nested ```Option```s were identified as illegally recursive (because ```ContainsRecursive``` is not an error, we would then keep compiling and eventually hit a stack overflow).
In order to make sure that we can recurse through the different ```Option``` invocations, I've changed the type of ```seen``` from ```Vec<DefId>``` to ```Vec<t>``` and added a separate ```same_type``` function to check whether two types are the same when generics are taken into account. Now we only return ```ContainsRecursive``` when this stricter check is satisfied. (There's probably a better way to do this, and I'm not sure my code is entirely correct--but my knowledge of rustc internals is pretty limited, so any help here would be appreciated!)
Note that the ```SelfRecursive``` check is still comparing ```DefId```s--this is necessary to prevent code like this from being allowed:
```rust
struct Foo { x: Bar<Foo> }
struct Bar<T> { x: Bar<Foo> }
```
All four of the new ```issue-17431``` tests cause infinite recursion on master, and errors with this pull request. I wrote the extra ```issue-3008-4.rs``` test to make sure I wasn't introducing a regression.
Fixes#17431.
This adds ‘help’ diagnostic messages to rustc. This is used for anything that provides help to the user, particularly the `--explain` messages that were previously integrated into the relevant error message.
They look like this:
```
match.rs:10:13: 10:14 error: unreachable pattern [E0001]
match.rs:10 1 => {},
^
match.rs:3:1: 3:38 note: in expansion of foo!
match.rs:7:5: 20:2 note: expansion site
match.rs:10:13: 10:14 help: pass `--explain E0001` to see a detailed explanation
```
(`help` is coloured cyan.) Adding these errors on a separate line stops the lines from being too long, as discussed in #16619.
detected (correctly) that there was only one impl and hence ignored the
`Self` bound completely. I (semi-arbitrarily) elected to delect the
impl, forcing the trait matcher to be more conservative and lean on the
where clauses in scope, yielding the original error message.
On 32-bit architectures, the size calculations on two of the tests wrap-around
in typeck, which gives the relevant arrays a size of 0, which is (correctly)
successfully allocated.