Extend `proc_macro_back_compat` lint to `procedural-masquerade`
We now lint on *any* use of `procedural-masquerade` crate. While this
crate still exists, its main reverse dependency (`cssparser`) no longer
depends on it. Any crates still depending off should stop doing so, as
it only exists to support very old Rust versions.
If a crate actually needs to support old versions of rustc via
`procedural-masquerade`, then they'll just need to accept the warning
until we remove it entirely (at the same time as the back-compat hack).
The latest version of `procedural-masquerade` does work with the
latest rustc, but trying to check for the version seems like more
trouble than it's worth.
While working on this, I realized that the `proc-macro-hack` check was
never actually doing anything. The corresponding enum variant in
`proc-macro-hack` is named `Value` or `Nested` - it has never been
called `Input`. Due to a strange Crater issue, the Crater run that
tested adding this did *not* end up testing it - some of the crates that
would have failed did not actually have their tests checked, making it
seem as though the `proc-macro-hack` check was working.
The Crater issue is being discussed at
https://rust-lang.zulipchat.com/#narrow/stream/242791-t-infra/topic/Nearly.20identical.20Crater.20runs.20processed.20a.20crate.20differently/near/230406661
Despite the `proc-macro-hack` check not actually doing anything, we
haven't gotten any reports from users about their build being broken.
I went ahead and removed it entirely, since it's clear that no one is
being affected by the `proc-macro-hack` regression in practice.
ast/hir: Rename field-related structures
I always forget what `ast::Field` and `ast::StructField` mean despite working with AST for long time, so this PR changes the naming to less confusing and more consistent.
- `StructField` -> `FieldDef` ("field definition")
- `Field` -> `ExprField` ("expression field", not "field expression")
- `FieldPat` -> `PatField` ("pattern field", not "field pattern")
Various visiting and other methods working with the fields are renamed correspondingly too.
The second commit reduces the size of `ExprKind` by boxing fields of `ExprKind::Struct` in preparation for https://github.com/rust-lang/rust/pull/80080.
Previously, there was no way to add a custom tool prefix, even if the tool
itself had registered a lint:
```
#![feature(register_tool)]
#![register_tool(xyz)]
#![warn(xyz::my_lint)]
```
```
$ rustc unknown-lint.rs --crate-type lib
error[E0710]: an unknown tool name found in scoped lint: `xyz::my_lint`
--> unknown-lint.rs:3:9
|
3 | #![warn(xyz::my_lint)]
| ^^^
```
This allows opting-in to lints from other tools using `register_tool`.
StructField -> FieldDef ("field definition")
Field -> ExprField ("expression field", not "field expression")
FieldPat -> PatField ("pattern field", not "field pattern")
Also rename visiting and other methods working on them.
We now lint on *any* use of `procedural-masquerade` crate. While this
crate still exists, its main reverse dependency (`cssparser`) no longer
depends on it. Any crates still depending off should stop doing so, as
it only exists to support very old Rust versions.
If a crate actually needs to support old versions of rustc via
`procedural-masquerade`, then they'll just need to accept the warning
until we remove it entirely (at the same time as the back-compat hack).
The latest version of `procedural-masquerade` does not work with the
latest rustc, but trying to check for the version seems like more
trouble than it's worth.
While working on this, I realized that the `proc-macro-hack` check was
never actually doing anything. The corresponding enum variant in
`proc-macro-hack` is named `Value` or `Nested` - it has never been
called `Input`. Due to a strange Crater issue, the Crater run that
tested adding this did *not* end up testing it - some of the crates that
would have failed did not actually have their tests checked, making it
seem as though the `proc-macro-hack` check was working.
The Crater issue is being discussed at
https://rust-lang.zulipchat.com/#narrow/stream/242791-t-infra/topic/Nearly.20identical.20Crater.20runs.20processed.20a.20crate.20differently/near/230406661
Despite the `proc-macro-hack` check not actually doing anything, we
haven't gotten any reports from users about their build being broken.
I went ahead and removed it entirely, since it's clear that no one is
being affected by the `proc-macro-hack` regression in practice.
Introduce `proc_macro_back_compat` lint, and emit for `time-macros-impl`
Now that future-incompat-report support has landed in nightly Cargo, we
can start to make progress towards removing the various proc-macro
back-compat hacks that have accumulated in the compiler.
This PR introduces a new lint `proc_macro_back_compat`, which results in
a future-incompat-report entry being generated. All proc-macro
back-compat warnings will be grouped under this lint. Note that this
lint will never actually become a hard error - instead, we will remove
the special cases for various macros, which will cause older versions of
those crates to emit some other error.
I've added code to fire this lint for the `time-macros-impl` case. This
is the easiest case out of all of our current back-compat hacks - the
crate was renamed to `time-macros`, so seeing a filename with
`time-macros-impl` guarantees that an older version of the parent `time`
crate is in use.
When Cargo's future-incompat-report feature gets stabilized, affected
users will start to see future-incompat warnings when they build their
crates.
Now that future-incompat-report support has landed in nightly Cargo, we
can start to make progress towards removing the various proc-macro
back-compat hacks that have accumulated in the compiler.
This PR introduces a new lint `proc_macro_back_compat`, which results in
a future-incompat-report entry being generated. All proc-macro
back-compat warnings will be grouped under this lint. Note that this
lint will never actually become a hard error - instead, we will remove
the special cases for various macros, which will cause older versions of
those crates to emit some other error.
I've added code to fire this lint for the `time-macros-impl` case. This
is the easiest case out of all of our current back-compat hacks - the
crate was renamed to `time-macros`, so seeing a filename with
`time-macros-impl` guarantees that an older version of the parent `time`
crate is in use.
When Cargo's future-incompat-report feature gets stabilized, affected
users will start to see future-incompat warnings when they build their
crates.
Change x64 size checks to not apply to x32.
Rust contains various size checks conditional on target_arch = "x86_64", but these checks were never intended to apply to x86_64-unknown-linux-gnux32. Add target_pointer_width = "64" to the conditions.
Implement built-in attribute macro `#[cfg_eval]` + some refactoring
This PR implements a built-in attribute macro `#[cfg_eval]` as it was suggested in https://github.com/rust-lang/rust/pull/79078 to avoid `#[derive()]` without arguments being abused as a way to configure input for other attributes.
The macro is used for eagerly expanding all `#[cfg]` and `#[cfg_attr]` attributes in its input ("fully configuring" the input).
The effect is identical to effect of `#[derive(Foo, Bar)]` which also fully configures its input before passing it to macros `Foo` and `Bar`, but unlike `#[derive]` `#[cfg_eval]` can be applied to any syntax nodes supporting macro attributes, not only certain items.
`cfg_eval` was the first name suggested in https://github.com/rust-lang/rust/pull/79078, but other alternatives are also possible, e.g. `cfg_expand`.
```rust
#[cfg_eval]
#[my_attr] // Receives `struct S {}` as input, the field is configured away by `#[cfg_eval]`
struct S {
#[cfg(FALSE)]
field: u8,
}
```
Tracking issue: https://github.com/rust-lang/rust/issues/82679
Let a portion of DefPathHash uniquely identify the DefPath's crate.
This allows to directly map from a `DefPathHash` to the crate it originates from, without constructing side tables to do that mapping -- something that is useful for incremental compilation where we deal with `DefPathHash` instead of `DefId` a lot.
It also allows to reliably and cheaply check for `DefPathHash` collisions which allows the compiler to gracefully abort compilation instead of running into a subsequent ICE at some random place in the code.
The following new piece of documentation describes the most interesting aspects of the changes:
```rust
/// A `DefPathHash` is a fixed-size representation of a `DefPath` that is
/// stable across crate and compilation session boundaries. It consists of two
/// separate 64-bit hashes. The first uniquely identifies the crate this
/// `DefPathHash` originates from (see [StableCrateId]), and the second
/// uniquely identifies the corresponding `DefPath` within that crate. Together
/// they form a unique identifier within an entire crate graph.
///
/// There is a very small chance of hash collisions, which would mean that two
/// different `DefPath`s map to the same `DefPathHash`. Proceeding compilation
/// with such a hash collision would very probably lead to an ICE and, in the
/// worst case, to a silent mis-compilation. The compiler therefore actively
/// and exhaustively checks for such hash collisions and aborts compilation if
/// it finds one.
///
/// `DefPathHash` uses 64-bit hashes for both the crate-id part and the
/// crate-internal part, even though it is likely that there are many more
/// `LocalDefId`s in a single crate than there are individual crates in a crate
/// graph. Since we use the same number of bits in both cases, the collision
/// probability for the crate-local part will be quite a bit higher (though
/// still very small).
///
/// This imbalance is not by accident: A hash collision in the
/// crate-local part of a `DefPathHash` will be detected and reported while
/// compiling the crate in question. Such a collision does not depend on
/// outside factors and can be easily fixed by the crate maintainer (e.g. by
/// renaming the item in question or by bumping the crate version in a harmless
/// way).
///
/// A collision between crate-id hashes on the other hand is harder to fix
/// because it depends on the set of crates in the entire crate graph of a
/// compilation session. Again, using the same crate with a different version
/// number would fix the issue with a high probability -- but that might be
/// easier said then done if the crates in questions are dependencies of
/// third-party crates.
///
/// That being said, given a high quality hash function, the collision
/// probabilities in question are very small. For example, for a big crate like
/// `rustc_middle` (with ~50000 `LocalDefId`s as of the time of writing) there
/// is a probability of roughly 1 in 14,750,000,000 of a crate-internal
/// collision occurring. For a big crate graph with 1000 crates in it, there is
/// a probability of 1 in 36,890,000,000,000 of a `StableCrateId` collision.
```
Given the probabilities involved I hope that no one will ever actually see the error messages. Nonetheless, I'd be glad about some feedback on how to improve them. Should we create a GH issue describing the problem and possible solutions to point to? Or a page in the rustc book?
r? `@pnkfelix` (feel free to re-assign)
Rust contains various size checks conditional on target_arch = "x86_64",
but these checks were never intended to apply to
x86_64-unknown-linux-gnux32. Add target_pointer_width = "64" to the
conditions.
- Rename `broken_intra_doc_links` to `rustdoc::broken_intra_doc_links`
- Ensure that the old lint names still work and give deprecation errors
- Register lints even when running doctests
Otherwise, all `rustdoc::` lints would be ignored.
- Register all existing lints as removed
This unfortunately doesn't work with `register_renamed` because tool
lints have not yet been registered when rustc is running. For similar
reasons, `check_backwards_compat` doesn't work either. Call
`register_removed` directly instead.
- Fix fallout
+ Rustdoc lints for compiler/
+ Rustdoc lints for library/
Note that this does *not* suggest `rustdoc::broken_intra_doc_links` for
`rustdoc::intra_doc_link_resolution_failure`, since there was no time
when the latter was valid.
When token-based attribute handling is implemeneted in #80689,
we will need to access tokens from `HasAttrs` (to perform
cfg-stripping), and we will to access attributes from `HasTokens` (to
construct a `PreexpTokenStream`).
This PR merges the `HasAttrs` and `HasTokens` traits into a new
`AstLike` trait. The previous `HasAttrs` impls from `Vec<Attribute>` and `AttrVec`
are removed - they aren't attribute targets, so the impls never really
made sense.
Crate root is sufficiently different from `mod` items, at least at syntactic level.
Also remove customization point for "`mod` item or crate root" from AST visitors.
Rollup of 11 pull requests
Successful merges:
- #80523 (#[doc(inline)] sym_generated)
- #80920 (Visit more targets when validating attributes)
- #81720 (Updated smallvec version due to RUSTSEC-2021-0003)
- #81891 ([rustdoc-json] Make `header` a vec of modifiers, and FunctionPointer consistent)
- #81912 (Implement the precise analysis pass for lint `disjoint_capture_drop_reorder`)
- #81914 (Fixing bad suggestion for `_` in `const` type when a function #81885)
- #81919 (BTreeMap: fix internal comments)
- #81927 (Add a regression test for #32498)
- #81965 (Fix MIR pretty printer for non-local DefIds)
- #82029 (Use debug log level for developer oriented logs)
- #82056 (fix ice (#82032))
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
This is a pure refactoring split out from #80689.
It represents the most invasive part of that PR, requiring changes in
every caller of `parse_outer_attributes`
In order to eagerly expand `#[cfg]` attributes while preserving the
original `TokenStream`, we need to know the range of tokens that
corresponds to every attribute target. This is accomplished by making
`parse_outer_attributes` return an opaque `AttrWrapper` struct. An
`AttrWrapper` must be converted to a plain `AttrVec` by passing it to
`collect_tokens_trailing_token`. This makes it difficult to accidentally
construct an AST node with attributes without calling `collect_tokens_trailing_token`,
since AST nodes store an `AttrVec`, not an `AttrWrapper`.
As a result, we now call `collect_tokens_trailing_token` for attribute
targets which only support inert attributes, such as generic arguments
and struct fields. Currently, the constructed `LazyTokenStream` is
simply discarded. Future PRs will record the token range corresponding
to the attribute target, allowing those tokens to be removed from an
enclosing `collect_tokens_trailing_token` call if necessary.
Add lint for `panic!(123)` which is not accepted in Rust 2021.
This extends the `panic_fmt` lint to warn for all cases where the first argument cannot be interpreted as a format string, as will happen in Rust 2021.
It suggests to add `"{}",` to format the message as a string. In the case of `std::panic!()`, it also suggests the recently stabilized
`std::panic::panic_any()` function as an alternative.
It renames the lint to `non_fmt_panic` to match the lint naming guidelines.
![image](https://user-images.githubusercontent.com/783247/106520928-675ea680-64d5-11eb-81f7-d8fa48b93a0b.png)
This is part of #80162.
r? ```@estebank```
This allows to directly map from a DefPathHash to the crate it
originates from, without constructing side tables to do that mapping.
It also allows to reliably and cheaply check for DefPathHash collisions.
Set tokens on AST node in `collect_tokens`
A new `HasTokens` trait is introduced, which is used to move logic from
the callers of `collect_tokens` into the body of `collect_tokens`.
In addition to reducing duplication, this paves the way for PR #80689,
which needs to perform additional logic during token collection.
A new `HasTokens` trait is introduced, which is used to move logic from
the callers of `collect_tokens` into the body of `collect_tokens`.
In addition to reducing duplication, this paves the way for PR #80689,
which needs to perform additional logic during token collection.
rustc_parse: Better spans for synthesized token streams
I think using the nonterminal span for synthesizing its tokens is a better approximation than using `DUMMY_SP` or the attribute span like #79472 did in `expand.rs`.
r? `@Aaron1011`