Add more *-unwind ABI variants
The following *-unwind ABIs are now supported:
- "C-unwind"
- "cdecl-unwind"
- "stdcall-unwind"
- "fastcall-unwind"
- "vectorcall-unwind"
- "thiscall-unwind"
- "aapcs-unwind"
- "win64-unwind"
- "sysv64-unwind"
- "system-unwind"
cc `@rust-lang/wg-ffi-unwind`
Currently, it can be `None` if the conversion from `OsString` fails, in
which case all searches will skip over the `SearchPathFile`.
The commit changes things so that the `SearchPathFile` just doesn't get
created in the first place. Same behaviour, but slightly simpler code.
rustdoc: Pre-calculate traits that are in scope for doc links
This eliminates one more late use of resolver (part of #83761).
At early doc link resolution time we go through parent modules of items from the current crate, reexports of items from other crates, trait items, and impl items collected by `collect-intra-doc-links` pass, determine traits that are in scope in each such module, and put those traits into a map used by later rustdoc passes.
r? `@jyn514`
Store a `Symbol` instead of an `Ident` in `AssocItem`
This is the same idea as #92533, but for `AssocItem` instead
of `VariantDef`/`FieldDef`.
With this change, we no longer have any uses of
`#[stable_hasher(project(...))]`
`Decoder` has two impls:
- opaque: this impl is already partly infallible, i.e. in some places it
currently panics on failure (e.g. if the input is too short, or on a
bad `Result` discriminant), and in some places it returns an error
(e.g. on a bad `Option` discriminant). The number of places where
either happens is surprisingly small, just because the binary
representation has very little redundancy and a lot of input reading
can occur even on malformed data.
- json: this impl is fully fallible, but it's only used (a) for the
`.rlink` file production, and there's a `FIXME` comment suggesting it
should change to a binary format, and (b) in a few tests in
non-fundamental ways. Indeed #85993 is open to remove it entirely.
And the top-level places in the compiler that call into decoding just
abort on error anyway. So the fallibility is providing little value, and
getting rid of it leads to some non-trivial performance improvements.
Much of this commit is pretty boring and mechanical. Some notes about
a few interesting parts:
- The commit removes `Decoder::{Error,error}`.
- `InternIteratorElement::intern_with`: the impl for `T` now has the same
optimization for small counts that the impl for `Result<T, E>` has,
because it's now much hotter.
- Decodable impls for SmallVec, LinkedList, VecDeque now all use
`collect`, which is nice; the one for `Vec` uses unsafe code, because
that gave better perf on some benchmarks.
This is the same idea as #92533, but for `AssocItem` instead
of `VariantDef`/`FieldDef`.
With this change, we no longer have any uses of
`#[stable_hasher(project(...))]`
Implement raw-dylib support for windows-gnu
Add support for `#[link(kind = "raw-dylib")]` on windows-gnu targets. Work around binutils's linker's inability to read import libraries produced by LLVM by calling out to the binutils `dlltool` utility to create an import library from a temporary .DEF file; this approach is effectively a slightly refined version of `@mati865's` earlier attempt at this strategy in PR #88801. (In particular, this attempt at this strategy adds support for `#[link_ordinal(...)]` as well.)
In support of #58713.
Implement `#[rustc_must_implement_one_of]` attribute
This PR adds a new attribute — `#[rustc_must_implement_one_of]` that allows changing the "minimal complete definition" of a trait. It's similar to GHC's minimal `{-# MINIMAL #-}` pragma, though `#[rustc_must_implement_one_of]` is weaker atm.
Such attribute was long wanted. It can be, for example, used in `Read` trait to make transitions to recently added `read_buf` easier:
```rust
#[rustc_must_implement_one_of(read, read_buf)]
pub trait Read {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> {
let mut buf = ReadBuf::new(buf);
self.read_buf(&mut buf)?;
Ok(buf.filled_len())
}
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> {
default_read_buf(|b| self.read(b), buf)
}
}
impl Read for Ty0 {}
//^ This will fail to compile even though all `Read` methods have default implementations
// Both of these will compile just fine
impl Read for Ty1 {
fn read(&mut self, buf: &mut [u8]) -> Result<usize> { /* ... */ }
}
impl Read for Ty2 {
fn read_buf(&mut self, buf: &mut ReadBuf<'_>) -> Result<()> { /* ... */ }
}
```
For now, this is implemented as an internal attribute to start experimenting on the design of this feature. In the future we may want to extend it:
- Allow arbitrary requirements like `a | (b & c)`
- Allow multiple requirements like
- ```rust
#[rustc_must_implement_one_of(a, b)]
#[rustc_must_implement_one_of(c, d)]
```
- Make it appear in rustdoc documentation
- Change the syntax?
- Etc
Eventually, we should make an RFC and make this (or rather similar) attribute public.
---
I'm fairly new to compiler development and not at all sure if the implementation makes sense, but at least it passes tests :)
rustc_metadata: Stop passing `CrateMetadataRef` by reference (step 1)
It's already a (fat) reference.
Double referencing it creates lifetime issues for its methods that want to return iterators.
---
Extracted from https://github.com/rust-lang/rust/pull/92245 for a perf run.
The PR changes a lot of symbol names due to function signature changes, so it's hard to do differential profiling, let's spend some machine time instead.
The field is also renamed from `ident` to `name. In most cases,
we don't actually need the `Span`. A new `ident` method is added
to `VariantDef` and `FieldDef`, which constructs the full `Ident`
using `tcx.def_ident_span()`. This method is used in the cases
where we actually need an `Ident`.
This makes incremental compilation properly track changes
to the `Span`, without all of the invalidations caused by storing
a `Span` directly via an `Ident`.
rustdoc: Introduce a resolver cache for sharing data between early doc link resolution and later passes
The refactoring parts of https://github.com/rust-lang/rust/pull/88679, shouldn't cause any slowdowns.
r? `@jyn514`
rustc_metadata: Optimize and document module children decoding
The first commit limits the item in the `item_children`/`each_child_of_item` query to modules (in name resolution sense) and adds a corresponding assertion.
The `associated_item_def_ids` query collecting children of traits and impls specifically now uses a simplified implementation not decoding unnecessary data instead of `each_child_of_item`, this gives a nice performance improvement.
The second commit does some renaming that clarifies the terminology used for all items in a module vs `use` items only.
By avoiding formatting and allocations in the no-ident case, and by making the span mandatory if the ident exists.
Use the optimized `opt_item_ident` to cleanup `fn each_child_of_item`
Stabilize -Z symbol-mangling-version=v0 as -C symbol-mangling-version=v0
This allows selecting `v0` symbol-mangling without an unstable option. Selecting `legacy` still requires -Z unstable-options.
This does not change the default symbol-mangling-version. See https://github.com/rust-lang/rust/pull/89917 for a pull request changing the default. Rationale, from #89917:
Rust's current mangling scheme depends on compiler internals; loses information about generic parameters (and other things) which makes for a worse experience when using external tools that need to interact with Rust symbol names; is inconsistent; and can contain . characters which aren't universally supported. Therefore, Rust has defined its own symbol mangling scheme which is defined in terms of the Rust language, not the compiler implementation; encodes information about generic parameters in a reversible way; has a consistent definition; and generates symbols that only use the characters A-Z, a-z, 0-9, and _.
Support for the new Rust symbol mangling scheme has been added to upstream tools that will need to interact with Rust symbols (e.g. debuggers).
This pull request allows enabling the new v0 symbol-mangling-version.
See #89917 for references to the implementation of v0, and for references to the tool changes to decode Rust symbols.
Remove effect of `#[no_link]` attribute on name resolution
Previously it hid all non-macro names from other crates.
This has no relation to linking and can change name resolution behavior in some cases (e.g. glob conflicts), in addition to just producing the "unresolved name" errors.
I can kind of understand the possible reasoning behind the current behavior - if you can use names from a `no_link` crates then you can use, for example, functions too, but whether it will actually work or produce link-time errors will depend on random factors like inliner behavior.
(^^^ This is not the actual reason why the current behavior exist, I've looked through git history and it's mostly accidental.)
I think this risk is ok for such an obscure attribute, and we don't need to specifically prevent use of non-macro items from such crates.
(I'm not actually sure why would anyone use `#[no_link]` on a crate, even if it's macro only, if you aware of any use cases, please share. IIRC, at some point it was used for crates implementing custom derives - the now removed legacy ones, not the current proc macros.)
Extracted from https://github.com/rust-lang/rust/pull/91795.
This allows selecting `v0` symbol-mangling without an unstable option.
Selecting `legacy` still requires -Z unstable-options.
Continue supporting -Z symbol-mangling-version for compatibility for
now, but show a deprecation warning for it.