Skip needless bitset for debuginfo
Found this while digging around looking at the inlining logic.
Seemed obvious enough so I decided to try to take care of it.
Is this what you had in mind, `@eddyb?`
Before this fix, the debuginfo for the fields was generated from the
struct defintion of Box<T>, but (at least at the moment) the compiler
pretends that Box<T> is just a (fat) pointer, so the fields need to be
`pointer` and `vtable` instead of `__0: Unique<T>` and `__1: Allocator`.
This is meant as a temporary mitigation until we can make sure that
simply treating Box as a regular struct in debuginfo does not cause too
much breakage in the ecosystem.
Fold aarch64 feature +fp into +neon
Arm's FEAT_FP and Feat_AdvSIMD describe the same thing on AArch64:
The Neon unit, which handles both floating point and SIMD instructions.
Moreover, a configuration for AArch64 must include both or neither.
Arm says "entirely proprietary" toolchains may omit floating point:
https://developer.arm.com/documentation/102374/0101/Data-processing---floating-point
In the Programmer's Guide for Armv8-A, Arm says AArch64 can have
both FP and Neon or neither in custom implementations:
https://developer.arm.com/documentation/den0024/a/AArch64-Floating-point-and-NEON
In "Bare metal boot code for Armv8-A", enabling Neon and FP
is just disabling the same trap flag:
https://developer.arm.com/documentation/dai0527/a
In an unlikely future where "Neon and FP" become unrelated,
we can add "[+-]fp" as its own feature flag.
Until then, we can simplify programming with Rust on AArch64 by
folding both into "[+-]neon", which is valid as it supersets both.
"[+-]neon" is retained for niche uses such as firmware, kernels,
"I just hate floats", and so on.
I am... pretty sure no one is relying on this.
An argument could be made that, as we are not an "entirely proprietary" toolchain, we should not support AArch64 without floats at all. I think that's a bit excessive. However, I want to recognize the intent: programming for AArch64 should be simplified where possible. For x86-64, programmers regularly set up illegal feature configurations because it's hard to understand them, see https://github.com/rust-lang/rust/issues/89586. And per the above notes, plus the discussion in https://github.com/rust-lang/rust/issues/86941, there should be no real use cases for leaving these features split: the two should in fact always go together.
- Fixesrust-lang/rust#95002.
- Fixesrust-lang/rust#95064.
- Fixesrust-lang/rust#95122.
Arm's FEAT_FP and Feat_AdvSIMD describe the same thing on AArch64:
The Neon unit, which handles both floating point and SIMD instructions.
Moreover, a configuration for AArch64 must include both or neither.
Arm says "entirely proprietary" toolchains may omit floating point:
https://developer.arm.com/documentation/102374/0101/Data-processing---floating-point
In the Programmer's Guide for Armv8-A, Arm says AArch64 can have
both FP and Neon or neither in custom implementations:
https://developer.arm.com/documentation/den0024/a/AArch64-Floating-point-and-NEON
In "Bare metal boot code for Armv8-A", enabling Neon and FP
is just disabling the same trap flag:
https://developer.arm.com/documentation/dai0527/a
In an unlikely future where "Neon and FP" become unrelated,
we can add "[+-]fp" as its own feature flag.
Until then, we can simplify programming with Rust on AArch64 by
folding both into "[+-]neon", which is valid as it supersets both.
"[+-]neon" is retained for niche uses such as firmware, kernels,
"I just hate floats", and so on.
Implement -Z oom=panic
This PR removes the `#[rustc_allocator_nounwind]` attribute on `alloc_error_handler` which allows it to unwind with a panic instead of always aborting. This is then used to implement `-Z oom=panic` as per RFC 2116 (tracking issue #43596).
Perf and binary size tests show negligible impact.
debuginfo: Refactor debuginfo generation for types
This PR implements the refactoring of the `rustc_codegen_llvm::debuginfo::metadata` module as described in MCP https://github.com/rust-lang/compiler-team/issues/482.
In particular it
- changes names to use `di_node` instead of `metadata`
- uniformly names all functions that build new debuginfo nodes `build_xyz_di_node`
- renames `CrateDebugContext` to `CodegenUnitDebugContext` (which is more accurate)
- removes outdated parts from `compiler/rustc_codegen_llvm/src/debuginfo/doc.md`
- moves `TypeMap` and functions that work directly work with it to a new `type_map` module
- moves enum related builder functions to a new `enums` module
- splits enum debuginfo building for the native and cpp-like cases, since they are mostly separate
- uses `SmallVec` instead of `Vec` in many places
- removes the old infrastructure for dealing with recursion cycles (`create_and_register_recursive_type_forward_declaration()`, `RecursiveTypeDescription`, `set_members_of_composite_type()`, `MemberDescription`, `MemberDescriptionFactory`, `prepare_xyz_metadata()`, etc)
- adds `type_map::build_type_with_children()` as a replacement for dealing with recursion cycles
- adds many (doc-)comments explaining what's going on
- changes cpp-like naming for C-Style enums so they don't get a `enum$<...>` name (because the NatVis visualizer does not apply to them)
- fixes detection of what is a C-style enum because some enums where classified as C-style even though they have fields
- changes cpp-like naming for generator enums so that NatVis works for them
- changes the position of discriminant debuginfo node so it is consistently nested inside the top-level union instead of, sometimes, next to it
The following could be done in subsequent PRs:
- add caching for `closure_saved_names_of_captured_variables`
- add caching for `generator_layout_and_saved_local_names`
- fix inconsistent handling of what is considered a C-style enum wrt to debuginfo
- rename `metadata` module to `types`
- move common generator fields to front instead of appending them
This PR is based on https://github.com/rust-lang/rust/pull/93644 which is not merged yet.
Right now, the changes are all done in one big commit. They could be split into smaller commits but hopefully the list of changes above makes it tractable to review them as a single commit too.
For now: r? `@ghost` (let's see if this affects compile times)
This commit
- changes names to use di_node instead of metadata
- uniformly names all functions that build new debuginfo nodes build_xyz_di_node
- renames CrateDebugContext to CodegenUnitDebugContext (which is more accurate)
- moves TypeMap and functions that work directly work with it to a new type_map module
- moves and reimplements enum related builder functions to a new enums module
- splits enum debuginfo building for the native and cpp-like cases, since they are mostly separate
- uses SmallVec instead of Vec in many places
- removes the old infrastructure for dealing with recursion cycles (create_and_register_recursive_type_forward_declaration(), RecursiveTypeDescription, set_members_of_composite_type(), MemberDescription, MemberDescriptionFactory, prepare_xyz_metadata(), etc)
- adds type_map::build_type_with_children() as a replacement for dealing with recursion cycles
- adds many (doc-)comments explaining what's going on
- changes cpp-like naming for C-Style enums so they don't get a enum$<...> name (because the NatVis visualizer does not apply to them)
- fixes detection of what is a C-style enum because some enums where classified as C-style even though they have fields
- changes the position of discriminant debuginfo node so it is consistently nested inside the top-level union instead of, sometimes, next to it
Improve `AdtDef` interning.
This commit makes `AdtDef` use `Interned`. Much of the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
r? `@fee1-dead`
This commit makes `AdtDef` use `Interned`. Much the commit is tedious
changes to introduce getter functions. The interesting changes are in
`compiler/rustc_middle/src/ty/adt.rs`.
Only emit pointer-like metadata for `Box<T, A>` when `A` is ZST
Basically copy the change in #94043, but for debuginfo.
r? ``@michaelwoerister``
Fixes#94725
Clarify `Layout` interning.
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
r? `@fee1-dead`
`Layout` is another type that is sometimes interned, sometimes not, and
we always use references to refer to it so we can't take any advantage
of the uniqueness properties for hashing or equality checks.
This commit renames `Layout` as `LayoutS`, and then introduces a new
`Layout` that is a newtype around an `Interned<LayoutS>`. It also
interns more layouts than before. Previously layouts within layouts
(via the `variants` field) were never interned, but now they are. Hence
the lifetime on the new `Layout` type.
Unlike other interned types, these ones are in `rustc_target` instead of
`rustc_middle`. This reflects the existing structure of the code, which
does layout-specific stuff in `rustc_target` while `TyAndLayout` is
generic over the `Ty`, allowing the type-specific stuff to occur in
`rustc_middle`.
The commit also adds a `HashStable` impl for `Interned`, which was
needed. It hashes the contents, unlike the `Hash` impl which hashes the
pointer.
Introduce `ConstAllocation`.
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
r? `@fee1-dead`
Currently some `Allocation`s are interned, some are not, and it's very
hard to tell at a use point which is which.
This commit introduces `ConstAllocation` for the known-interned ones,
which makes the division much clearer. `ConstAllocation::inner()` is
used to get the underlying `Allocation`.
In some places it's natural to use an `Allocation`, in some it's natural
to use a `ConstAllocation`, and in some places there's no clear choice.
I've tried to make things look as nice as possible, while generally
favouring `ConstAllocation`, which is the type that embodies more
information. This does require quite a few calls to `inner()`.
The commit also tweaks how `PartialOrd` works for `Interned`. The
previous code was too clever by half, building on `T: Ord` to make the
code shorter. That caused problems with deriving `PartialOrd` and `Ord`
for `ConstAllocation`, so I changed it to build on `T: PartialOrd`,
which is slightly more verbose but much more standard and avoided the
problems.
This ensures that information about target features configured with
`-C target-feature=...` or detected with `-C target-cpu=native` is
retained for subsequent consumers of LLVM bitcode.
This is crucial for linker plugin LTO, since this information is not
conveyed to the plugin otherwise.
Add !align metadata on loads of &/&mut/Box
Note that this refers to the alignment of what the loaded value points
to, _not_ the alignment of the loaded value itself.
r? `@ghost` (blocked on #94158)
Remove LLVM attribute removal
This was necessary before, because `declare_raw_fn` would always apply
the default optimization attributes to every declared function.
Then `attributes::from_fn_attrs` would have to remove the default
attributes in the case of, e.g. `#[optimize(speed)]` in a `-Os` build.
(see [`src/test/codegen/optimize-attr-1.rs`](03a8cc7df1/src/test/codegen/optimize-attr-1.rs (L33)))
However, every relevant callsite of `declare_raw_fn` (i.e. where we
actually generate code for the function, and not e.g. a call to an
intrinsic, where optimization attributes don't [?] matter)
calls `from_fn_attrs`, so we can remove the attribute setting
from `declare_raw_fn`, and rely on `from_fn_attrs` to apply the correct
attributes all at once.
r? `@ghost` (blocked on #94221)
`@rustbot` label S-blocked
Direct users towards using Rust target feature names in CLI
This PR consists of a couple of changes on how we handle target features.
In particular there is a bug-fix wherein we avoid passing through features that aren't prefixed by `+` or `-` to LLVM. These appear to be causing LLVM to assert, which is pretty poor a behaviour (and also makes it pretty clear we expect feature names to be prefixed).
The other commit, I anticipate to be somewhat more controversial is outputting a warning when users specify a LLVM-specific, or otherwise unknown, feature name on the CLI. In those situations we request users to either replace it with a known Rust feature name (e.g. `bmi` -> `bmi1`) or file a feature request. I've a couple motivations for this: first of all, if users are specifying these features on the command line, I'm pretty confident there is also a need for these features to be usable via `#[cfg(target_feature)]` machinery. And second, we're growing a fair number of backends recently and having ability to provide some sort of unified-ish interface in this place seems pretty useful to me.
Sponsored by: standard.ai
If they are trying to use features rustc doesn't yet know about,
request a feature request.
Additionally, also warn against using feature names without leading `+`
or `-` signs.
This was necessary before, because `declare_raw_fn` would always apply
the default optimization attributes to every declared function,
and then `attributes::from_fn_attrs` would have to remove the default
attributes in the case of, e.g. `#[optimize(speed)]` in a `-Os` build.
However, every relevant callsite of `declare_raw_fn` (i.e. where we
actually generate code for the function, and not e.g. a call to an
intrinsic, where optimization attributes don't [?] matter)
calls `from_fn_attrs`, so we can simply remove the attribute setting
from `declare_raw_fn`, and rely on `from_fn_attrs` to apply the correct
attributes all at once.