There's a lot of stuff wrong with the representation of these types:
TyFnDef doesn't actually uniquely identify a function, TyFnPtr is used to
represent method calls, TyFnDef in the sub-expression of a cast isn't
correctly reified, and probably some other stuff I haven't discovered yet.
Splitting them seems like the right first step, though.
This will correctly add the thread_local attribute to the external static variable ```errno```:
```rust
extern {
#[thread_local]
static errno: c_int;
}
```
Before this commit, the thread_local attribute is ignored. Fixes#30795.
Thanks @alexcrichton for pointing out the solution.
This commit transitions the compiler to using the new exception handling
instructions in LLVM for implementing unwinding for MSVC. This affects both 32
and 64-bit MSVC as they're both now using SEH-based strategies. In terms of
standard library support, lots more details about how SEH unwinding is
implemented can be found in the commits.
In terms of trans, this change necessitated a few modifications:
* Branches were added to detect when the old landingpad instruction is used or
the new cleanuppad instruction is used to `trans::cleanup`.
* The return value from `cleanuppad` is not stored in an `alloca` (because it
cannot be).
* Each block in trans now has an `Option<LandingPad>` instead of `is_lpad: bool`
for indicating whether it's in a landing pad or not. The new exception
handling intrinsics require that on MSVC each `call` inside of a landing pad
is annotated with which landing pad that it's in. This change to the basic
block means that whenever a `call` or `invoke` instruction is generated we
know whether to annotate it as part of a cleanuppad or not.
* Lots of modifications were made to the instruction builders to construct the
new instructions as well as pass the tagging information for the call/invoke
instructions.
* The translation of the `try` intrinsics for MSVC has been overhauled to use
the new `catchpad` instruction. The filter function is now also a
rustc-generated function instead of a purely libstd-defined function. The
libstd definition still exists, it just has a stable ABI across architectures
and leaves some of the really weird implementation details to the compiler
(e.g. the `localescape` and `localrecover` intrinsics).
This is groundwork for #30587 (typestrong constant integrals), but imo it's a change that in itself is good, too, since we don't just juggle `u64`s around anymore.
`ty::Disr` will be changed to a `ConstInt` in #30587
This will correctly add the thread_local attribute to the external static
variable "errno":
extern {
#[thread_local]
static errno: c_int;
}
Before this commit, the thread_local attribute is ignored.
So far `librustc::trans::base::trans_fn()` and `trans_closure()` have been passed the list of attributes on the function being translated *only* if the function was local and non-generic. For generic functions, functions inlined from other crates, functions with foreign ABI and for closures, only an empty list of attributes was ever passed to `trans_fn()`.
This led to the case that generic functions marked with `#[rustc_mir]` where not actually translated via MIR but via the legacy translation path.
This PR makes function/closure attributes always be passed to `trans_fn()` and disables the one test where this makes a difference.
If there is an actual reason why attributes were not passed along in these cases, let me know.
cc @rust-lang/compiler
cc @luqmana regarding the test case
This is needed as item types are allowed to be unnormalized.
Fixes an ICE that occurs when foreign function signatures contained
an associated type.
Fixes#28983
paths, and construct paths for all definitions. Also, stop rewriting
DefIds for closures, and instead just load the closure data from
the original def-id, which may be in another crate.
Unwinding across an FFI boundary is undefined behaviour, so we can mark
all external function as nounwind. The obvious exception are those
functions that actually perform the unwinding.
The functions is useful for all kinds of fat pointers, but get_len()
just feels so wrong for trait object fat pointers. Let's use get_meta()
because that's rather neutral.
This is purposely separate to the "rust-intrinsic" ABI, because these
intrinsics are theoretically going to become stable, and should be fine
to be independent of the compiler/language internals since they're
intimately to the platform.
This commit moves the IR files in the distribution, rust_try.ll,
rust_try_msvc_64.ll, and rust_try_msvc_32.ll into the compiler from the main
distribution. There's a few reasons for this change:
* LLVM changes its IR syntax from time to time, so it's very difficult to
have these files build across many LLVM versions simultaneously. We'll likely
want to retain this ability for quite some time into the future.
* The implementation of these files is closely tied to the compiler and runtime
itself, so it makes sense to fold it into a location which can do more
platform-specific checks for various implementation details (such as MSVC 32
vs 64-bit).
* This removes LLVM as a build-time dependency of the standard library. This may
end up becoming very useful if we move towards building the standard library
with Cargo.
In the immediate future, however, this commit should restore compatibility with
LLVM 3.5 and 3.6.
This has a number of advantages compared to creating a copy in memory
and passing a pointer. The obvious one is that we don't have to put the
data into memory but can keep it in registers. Since we're currently
passing a pointer anyway (instead of using e.g. a known offset on the
stack, which is what the `byval` attribute would achieve), we only use a
single additional register for each fat pointer, but save at least two
pointers worth of stack in exchange (sometimes more because more than
one copy gets eliminated). On archs that pass arguments on the stack, we
save a pointer worth of stack even without considering the omitted
copies.
Additionally, LLVM can optimize the code a lot better, to a large degree
due to the fact that lots of copies are gone or can be optimized away.
Additionally, we can now emit attributes like nonnull on the data and/or
vtable pointers contained in the fat pointer, potentially allowing for
even more optimizations.
This results in LLVM passes being about 3-7% faster (depending on the
crate), and the resulting code is also a few percent smaller, for
example:
text data filename
5671479 3941461 before/librustc-d8ace771.so
5447663 3905745 after/librustc-d8ace771.so
1944425 2394024 before/libstd-d8ace771.so
1896769 2387610 after/libstd-d8ace771.so
I had to remove a call in the backtrace-debuginfo test, because LLVM can
now merge the tails of some blocks when optimizations are turned on,
which can't correctly preserve line info.
Fixes#22924
Cc #22891 (at least for fat pointers the code is good now)
Loading from and storing to small aggregates happens by casting the
aggregate pointer to an appropriately sized integer pointer to avoid
the usage of first class aggregates which would lead to less optimized
code.
But this means that, for example, a tuple of type (i16, i16) will be
loading through an i32 pointer and because we currently don't provide
alignment information LLVM assumes that the load should use the ABI
alignment for i32 which would usually be 4 byte alignment. But the
alignment requirement for the (i16, i16) tuple will usually be just 2
bytes, so we're overestimating alignment, which invokes undefined
behaviour.
Therefore we must emit appropriate alignment information for
stores/loads through such casted pointers.
Fixes#23431
We provide tools to tell what exact symbols to emit for any fn or static, but
don’t quite check if that won’t cause any issues later on. Some of the issues
include LLVM mangling our names again and our names pointing to wrong locations,
us generating dumb foreign call wrappers, linker errors, extern functions
resolving to different symbols altogether (extern {fn fail();} fail(); in some
cases calling fail1()), etc.
Before the commit we had a function called note_unique_llvm_symbol, so it is
clear somebody was aware of the issue at some point, but the function was barely
used, mostly in irrelevant locations.
Along with working on it I took liberty to start refactoring trans/base into
a few smaller modules. The refactoring is incomplete and I hope I will find some
motivation to carry on with it.
This is possibly a [breaking-change] because it makes dumbly written code
properly invalid.