rustdoc: Reduce allocations in a `theme` function
`str::replace` allocates a new `String`...
This could probably be made more efficient, but I think it'd have to be clunky imperative code to achieve that.
pre-push.sh: Use python3 if python is not found
Since Python 2 has reached EOL, `python` may not be available in certain systems (e.g., recent macOS). We should use `python3` in this case to avoid error like `python: No such file or directory`.
Document the current MIR semantics that are clear from existing code
This PR adds documentation to places, operands, rvalues, statementkinds, and terminatorkinds that describes their existing semantics and requirements. In many places the semantics depend on the Rust memory model or other T-Lang decisions - when this is the case, it is just noted as such with links to UCG issues where possible. I'm hopeful that none of the documentation added here can be used to justify optimizations that depend on the memory model. The documentation for places and operands probably comes closest to running afoul of this - if people think that it cannot be merged as is, it can definitely also be taken out.
The goal here is to only document parts of MIR that seem to be decided already, or are at least depended on by existing code. That leaves quite a number of open questions - those are marked as "needs clarification." I'm not sure what to do with those in this PR - we obviously can't decide all these questions here. Should I just leave them in as is? Take them out? Keep them in but as `//` instead of `///` comments?
If this is too big to review at once, I can split this up.
r? rust-lang/mir-opt
Faster parsing for lower numbers for radix up to 16 (cont.)
( Continuation of https://github.com/rust-lang/rust/pull/83371 )
With LingMan's change I think this is potentially ready.
Respect -Z verify-llvm-ir and other flags that add extra passes when combined with -C no-prepopulate-passes in the new LLVM Pass Manager.
As part of the switch to the new LLVM Pass Manager the behaviour of flags such as `-Z verify-llvm-ir` (e.g. sanitizer, instrumentation) was modified when combined with `-C no-prepopulate-passes`. With the old PM, rustc was the one manually constructing the pipeline and respected those flags but in the new pass manager, those flags are used to build a list of callbacks that get invoked at certain extension points in the pipeline. Unfortunately, `-C no-prepopulate-passes` would skip building the pipeline altogether meaning we'd never add the corresponding passes. The fix here is to just manually invoke those callbacks as needed.
Fixes#95874
Demonstrating the current vs fixed behaviour using the bug in #95864
```console
$ rustc +nightly asm-miscompile.rs --edition 2021 --emit=llvm-ir -C no-prepopulate-passes -Z verify-llvm-ir
$ echo $?
0
$ rustc +stage1 asm-miscompile.rs --edition 2021 --emit=llvm-ir -C no-prepopulate-passes -Z verify-llvm-ir
Basic Block in function '_ZN14asm_miscompile3foo28_$u7b$$u7b$closure$u7d$$u7d$17h360e2f7eee1275c5E' does not have terminator!
label %bb1
LLVM ERROR: Broken module found, compilation aborted!
```
Rollup of 7 pull requests
Successful merges:
- #95008 ([`let_chains`] Forbid `let` inside parentheses)
- #95801 (Replace RwLock by a futex based one on Linux)
- #95864 (Fix miscompilation of inline assembly with outputs in cases where we emit an invoke instead of call instruction.)
- #95894 (Fix formatting error in pin.rs docs)
- #95895 (Clarify str::from_utf8_unchecked's invariants)
- #95901 (Remove duplicate aliases for `check codegen_{cranelift,gcc}` and fix `build codegen_gcc`)
- #95927 (CI: do not compile libcore twice when performing LLVM PGO)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Since Python 2 has reached EOL, `python` may not be available in certain
systems (e.g., recent macOS). We should use `python3` in this case to
avoid error like `python: No such file or directory`.
[bootstrap.py] Instruct curl to follow redirect
Some mirror RUSTUP_DIST_SERVER (like https://mirrors.sjtug.sjtu.edu.cn/rust-static) perform redirection when downloading
stage0 compiler. Curl should be able to follow that.
CI: do not compile libcore twice when performing LLVM PGO
I forgot the delete the first compilation when modifying this file in a previous PR.
r? ```@lqd```
Remove duplicate aliases for `check codegen_{cranelift,gcc}` and fix `build codegen_gcc`
* Remove duplicate aliases
Bootstrap already allows selecting these in `PathSet::has`, which allows
any string that matches the end of a full path.
I found these by adding `assert!(path.exists())` in `StepDescription::paths`.
I think ideally we wouldn't have any aliases that aren't paths, but I've held
off on enforcing that here since it may be controversial, I'll open a separate PR.
* Add `build compiler/rustc_codegen_gcc` as an alias for `CodegenBackend`
These paths (`_cranelift` and `_gcc`) are somewhat misleading, since they
actually tell bootstrap to build *all* codegen backends. But this seems like
a useful improvement in the meantime.
cc ```@bjorn3``` ```@antoyo```
Clarify str::from_utf8_unchecked's invariants
Specifically, make it clear that it is immediately UB to pass ill-formed UTF-8 into the function. The previous wording left space to interpret that the UB only occurred when calling another function, which "assumes that `&str`s are valid UTF-8."
This does not change whether str being UTF-8 is a safety or a validity invariant. (As per previous discussion, it is a safety invariant, not a validity invariant.) It just makes it clear that valid UTF-8 is a precondition of str::from_utf8_unchecked, and that emitting an Abstract Machine fault (e.g. UB or a sanitizer error) on invalid UTF-8 is a valid thing to do.
If user code wants to create an unsafe `&str` pointing to ill-formed UTF-8, it must be done via transmutes. Also, just, don't.
Zulip discussion: https://rust-lang.zulipchat.com/#narrow/stream/136281-t-lang.2Fwg-unsafe-code-guidelines/topic/str.3A.3Afrom_utf8_unchecked.20Safety.20requirement
Fix miscompilation of inline assembly with outputs in cases where we emit an invoke instead of call instruction.
We ran into this bug where rustc would segfault while trying to compile certain uses of inline assembly.
Here is a simple repro that demonstrates the issue:
```rust
#![feature(asm_unwind)]
fn main() {
let _x = String::from("string here just cause we need something with a non-trivial drop");
let foo: u64;
unsafe {
std::arch::asm!(
"mov {}, 1",
out(reg) foo,
options(may_unwind)
);
}
println!("{}", foo);
}
```
([playground link](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2021&gist=7d6641e83370d2536a07234aca2498ff))
But crucially `feature(asm_unwind)` is not actually needed and this can be triggered on stable as a result of the way async functions/generators are handled in the compiler. e.g.:
```rust
extern crate futures; // 0.3.21
async fn bar() {
let foo: u64;
unsafe {
std::arch::asm!(
"mov {}, 1",
out(reg) foo,
);
}
println!("{}", foo);
}
fn main() {
futures::executor::block_on(bar());
}
```
([playground link](https://play.rust-lang.org/?version=stable&mode=debug&edition=2021&gist=1c7781c34dd4a3e80ae4bd936a0c82fc))
An example of the incorrect LLVM generated:
```llvm
bb1: ; preds = %start
%1 = invoke i64 asm sideeffect alignstack inteldialect unwind "mov ${0:q}, 1", "=&r,~{dirflag},~{fpsr},~{flags},~{memory}"()
to label %bb2 unwind label %cleanup, !srcloc !9
store i64 %1, i64* %foo, align 8
bb2:
[...snip...]
```
The store should not be placed after the asm invoke but rather should be in the normal control flow basic block (`bb2` in this case).
[Here](https://gist.github.com/luqmana/be1af5b64d2cda5a533e3e23a7830b44) is a writeup of the investigation that lead to finding this.
Replace RwLock by a futex based one on Linux
This replaces the pthread-based RwLock on Linux by a futex based one.
This implementation is similar to [the algorithm](https://gist.github.com/kprotty/3042436aa55620d8ebcddf2bf25668bc) suggested by `@kprotty,` but modified to prefer writers and spin before sleeping. It uses two futexes: One for the readers to wait on, and one for the writers to wait on. The readers futex contains the state of the RwLock: The number of readers, a bit indicating whether writers are waiting, and a bit indicating whether readers are waiting. The writers futex is used as a simple condition variable and its contents are meaningless; it just needs to be changed on every notification.
Using two futexes rather than one has the obvious advantage of allowing a separate queue for readers and writers, but it also means we avoid the problem a single-futex RwLock would have of making it hard for a writer to go to sleep while the number of readers is rapidly changing up and down, as the writers futex is only changed when we actually want to wake up a writer.
It always prefers writers, as we decided [here](https://github.com/rust-lang/rust/issues/93740#issuecomment-1070696128).
To be able to prefer writers, it relies on futex_wake to return the number of awoken threads to be able to handle write-unlocking while both the readers-waiting and writers-waiting bits are set. Instead of waking both and letting them race, it first wakes writers and only continues to wake the readers too if futex_wake reported there were no writers to wake up.
r? `@Amanieu`
[`let_chains`] Forbid `let` inside parentheses
Parenthesizes are mostly a no-op in let chains, in other words, they are mostly ignored.
```rust
let opt = Some(Some(1i32));
if (let Some(a) = opt && (let Some(b) = a)) && b == 1 {
println!("`b` is declared inside but used outside");
}
```
As seen above, such behavior can lead to confusion.
A proper fix or nested encapsulation would probably require research, time and a modified MIR graph so in this PR I simply denied any `let` inside parentheses. Non-let stuff are still allowed.
```rust
fn main() {
let fun = || true;
if let true = (true && fun()) && (true) {
println!("Allowed");
}
}
```
It is worth noting that `let ...` is not an expression and the RFC did not mention this specific situation.
cc `@matthewjasper`