try_execute_query is now able to centralize the path for query
get/ensure/force.
try_execute_query now takes the dep_node as a parameter, so it can
accommodate `force`. This dep_node is an Option to avoid computing it in
the `get` fast path.
try_execute_query now returns both the result and the dep_node_index to
allow the caller to handle the dep graph.
The caller is responsible for marking the dependency.
`with_taks_impl` is only called from `with_eval_always_task` and
`with_task` . The former is only used in query invocation, while the
latter is also used to start the `tcx` and to trigger codegen.
This move should not change significantly the number of calls to this
assertion.
When an incremental fingerprint mismatch occurs, we debug-print
our `DepNode` and query result. Unfortunately, the debug printing
process may cause us to run additional queries, which can result
in a re-entrant fingerprint mismatch error.
To avoid a double panic, this commit adds a thread-local variable
to detect re-entrant calls.
Remove unused feature gates
The first commit removes a usage of a feature gate, but I don't expect it to be controversial as the feature gate was only used to workaround a limitation of rust in the past. (closures never being `Clone`)
The second commit uses `#[allow_internal_unstable]` to avoid leaking the `trusted_step` feature gate usage from inside the index newtype macro. It didn't work for the `min_specialization` feature gate though.
The third commit removes (almost) all feature gates from the compiler that weren't used anyway.
Make `Step` trait safe to implement
This PR makes a few modifications to the `Step` trait that I believe better position it for stabilization in the short term. In particular,
1. `unsafe trait TrustedStep` is introduced, indicating that the implementation of `Step` for a given type upholds all stated invariants (which have remained unchanged). This is gated behind a new `trusted_step` feature, as stabilization is realistically blocked on min_specialization.
2. The `Step` trait is internally specialized on the `TrustedStep` trait, which avoids a serious performance regression.
3. `TrustedLen` is implemented for `T: TrustedStep` as the latter's invariants subsume the former's.
4. The `Step` trait is no longer `unsafe`, as the invariants must not be relied upon by unsafe code (unless the type implements `TrustedStep`).
5. `TrustedStep` is implemented for all types that implement `Step` in the standard library and compiler.
6. The `step_trait_ext` feature is merged into the `step_trait` feature. I was unable to find any reasoning for the features being split; the `_unchecked` methods need not necessarily be stabilized at the same time, but I think it is useful to have them under the same feature flag.
All existing implementations of `Step` will be broken, as it is not possible to `unsafe impl` a safe trait. Given this trait only exists on nightly, I feel this breakage is acceptable. The blanket `impl<T: Step> TrustedLen for T` will likely cause some minor breakage, but this should be covered by the equivalent impl for `TrustedStep`.
Hopefully these changes are sufficient to place `Step` in decent position for stabilization, which would allow user-defined types to be used with `a..b` syntax.
This means that we're no longer generating the iteration/locking code for each
invocation site of iter_results, rather just once per query.
This is a 15% win in instruction counts when compiling the rustc_query_impl crate.