We were recording stability attributes applied to fields in the
compiler, and even annotating it in the libs, but the compiler didn't
actually do the checks to give errors/warnings in user crates.
Previously an implementation of a stable trait allows implementations of
unstable methods. This updates the stability pass to ensure that all items of an
impl block of a trait are indeed stable on the trait itself.
There are a number of holes that the stability lint did not previously cover,
including:
* Types
* Bounds on type parameters on functions and impls
* Where clauses
* Imports
* Patterns (structs and enums)
These holes have all been fixed by overriding the `visit_path` function on the
AST visitor instead of a few specialized cases. This change also necessitated a
few stability changes:
* The `collections::fmt` module is now stable (it was already supposed to be).
* The `thread_local:👿:Key` type is now stable (it was already supposed to
be).
* The `std::rt::{begin_unwind, begin_unwind_fmt}` functions are now stable.
These are required via the `panic!` macro.
* The `std::old_io::stdio::{println, println_args}` functions are now stable.
These are required by the `print!` and `println!` macros.
* The `ops::{FnOnce, FnMut, Fn}` traits are now `#[stable]`. This is required to
make bounds with these traits stable. Note that manual implementations of
these traits are still gated by default, this stability only allows bounds
such as `F: FnOnce()`.
Additionally, the compiler now has special logic to ignore its own generated
`__test` module for the `--test` harness in terms of stability.
Closes#8962Closes#16360Closes#20327
[breaking-change]
This gets rid of the 'experimental' level, removes the non-staged_api
case (i.e. stability levels for out-of-tree crates), and lets the
staged_api attributes use 'unstable' and 'deprecated' lints.
This makes the transition period to the full feature staging design
a bit nicer.
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
This commit implements processing these two attributes at the crate level as
well as at the item level. When #[cfg] is applied at the crate level, then the
entire crate will be omitted if the cfg doesn't match. The #[cfg_attr] attribute
is processed as usual in that the attribute is included or not depending on
whether the cfg matches.
This was spurred on by motivations of #18585 where #[cfg_attr] annotations will
be applied at the crate-level.
cc #18585
This commit adds support for linting `extern crate` statements for stability
attributes attached to the crate itself. This is likely to be the mechanism used
to deny access to experimental crates that are part of the standard
distribution.
cc #18585
Previously the lint considered cross-crate items only. That's
appropriate for unstable and experimental levels, but not for
deprecation.
Closes#16409
Due to deny(deprecation), this is a:
[breaking-change]
This small patch causes the stability lint to bail out when traversing
any AST produced via a macro expansion. Ultimately, we would like to
lint the contents of the macro at the place where the macro is defined,
but regardless we should not be linting it at the use site.
Closes#15703
This commit makes several changes to the stability index infrastructure:
* Stability levels are now inherited lexically, i.e., each item's
stability level becomes the default for any nested items.
* The computed stability level for an item is stored as part of the
metadata. When using an item from an external crate, this data is
looked up and cached.
* The stability lint works from the computed stability level, rather
than manual stability attribute annotations. However, the lint still
checks only a limited set of item uses (e.g., it does not check every
component of a path on import). This will be addressed in a later PR,
as part of issue #8962.
* The stability lint only applies to items originating from external
crates, since the stability index is intended as a promise to
downstream crates.
* The "experimental" lint is now _allow_ by default. This is because
almost all existing crates have been marked "experimental", pending
library stabilization. With inheritance in place, this would generate
a massive explosion of warnings for every Rust program.
The lint should be changed back to deny-by-default after library
stabilization is complete.
* The "deprecated" lint still warns by default.
The net result: we can begin tracking stability index for the standard
libraries as we stabilize, without impacting most clients.
Closes#13540.
If it's a trait method, this checks the stability attribute of the
method inside the trait definition. Otherwise, it checks the method
implementation itself.