Remove interior mutability from TraitDef by turning fields into queries
This PR gets rid of anything `std::cell` in `TraitDef` by
- moving the global list of trait impls from `TraitDef` into a query,
- moving the list of trait impls relevent for some self-type from `TraitDef` into a query
- moving the specialization graph of trait impls into a query, and
- moving `TraitDef::object_safety` into a query.
I really like how querifying things not only helps with incremental compilation and on-demand, but also just plain makes the code cleaner `:)`
There are also some smaller fixes in the PR. Commits can be reviewed separately.
r? @eddyb or @nikomatsakis
Move the code for loading metadata from rlibs and dylibs from
rustc_metadata into rustc_trans, and introduce a trait to avoid
introducing a direct dependency on rustc_trans.
This means rustc_metadata is no longer rebuilt when LLVM changes.
rustc: Add a new `-Z force-unstable-if-unmarked` flag
This commit adds a new `-Z` flag to the compiler for use when bootstrapping the
compiler itself. We want to be able to use crates.io crates, but we also want
the usage of such crates to be as ergonomic as possible! To that end compiler
crates are a little tricky in that the crates.io crates are not annotated as
unstable, nor do they expect to pull in unstable dependencies.
To cover all these situations it's intended that the compiler will forever now
bootstrap with `-Z force-unstable-if-unmarked`. This flags serves a dual purpose
of forcing crates.io crates to themselves be unstable while also allowing them
to use other "unstable" crates.io crates. This should mean that adding a
dependency to compiler no longer requires upstream modification with
unstable/staged_api attributes for inclusion!
This commit adds a new `-Z` flag to the compiler for use when bootstrapping the
compiler itself. We want to be able to use crates.io crates, but we also want
the usage of such crates to be as ergonomic as possible! To that end compiler
crates are a little tricky in that the crates.io crates are not annotated as
unstable, nor do they expect to pull in unstable dependencies.
To cover all these situations it's intended that the compiler will forever now
bootstrap with `-Z force-unstable-if-unmarked`. This flags serves a dual purpose
of forcing crates.io crates to themselves be unstable while also allowing them
to use other "unstable" crates.io crates. This should mean that adding a
dependency to compiler no longer requires upstream modification with
unstable/staged_api attributes for inclusion!
This is a more principled version of the `RefCell` we were using
before. We now allocate a `Steal<Mir<'tcx>>` for each intermediate MIR
pass; when the next pass steals the entry, any later attempts to use it
will panic (there is no way to *test* if MIR is stolen, you're just
supposed to *know*).
The new setup is as follows. There is a pipeline of MIR passes that each
run **per def-id** to optimize a particular function. You are intended
to request MIR at whatever stage you need it. At the moment, there is
only one stage you can request:
- `optimized_mir(def_id)`
This yields the final product. Internally, it pulls the MIR for the
given def-id through a series of steps. Right now, these are still using
an "interned ref-cell" but they are intended to "steal" from one
another:
- `mir_build` -- performs the initial construction for local MIR
- `mir_pass_set` -- performs a suite of optimizations and transformations
- `mir_pass` -- an individual optimization within a suite
So, to construct the optimized MIR, we invoke:
mir_pass_set((MIR_OPTIMIZED, def_id))
which will build up the final MIR.
Implement a file-path remapping feature in support of debuginfo and reproducible builds
This PR adds the `-Zremap-path-prefix-from`/`-Zremap-path-prefix-to` commandline option pair and is a more general implementation of #41419. As opposed to the previous attempt, this implementation should enable reproducible builds regardless of the working directory of the compiler.
This implementation of the feature is more general in the sense that the re-mapping will affect *all* paths the compiler emits, including the ones in error messages.
r? @alexcrichton
#37653 support `default impl` for specialization
this commit implements the first step of the `default impl` feature:
> all items in a `default impl` are (implicitly) `default` and hence
> specializable.
In order to test this feature I've copied all the tests provided for the
`default` method implementation (in run-pass/specialization and
compile-fail/specialization directories) and moved the `default` keyword
from the item to the impl.
See [referenced](https://github.com/rust-lang/rust/issues/37653) issue for further info
r? @aturon
this commit implements the first step of the `default impl` feature:
all items in a `default impl` are (implicitly) `default` and hence
specializable.
In order to test this feature I've copied all the tests provided for the
`default` method implementation (in run-pass/specialization and
compile-fail/specialization directories) and moved the `default` keyword
from the item to the impl.
See referenced issue for further info
this avoids parsing item attributes on each call to `item_attrs`, which takes
off 33% (!) of translation time and 50% (!) of trans-item collection time.
This may seem like overkill, but it's exactly what we want/need for
incremental compilation I think. In particular, while generating code
for some codegen unit X, we can wind up querying about any number of
external items, and we only want to be forced to rebuild X is some of
those changed from a foreign item to otherwise. Factoring this into a
query means we would re-run only if some `false` became `true` (or vice
versa).
Instead of collecting all potential inputs to some metadata entry and
hashing those, we directly hash the values we are storing in metadata.
This is more accurate and doesn't suffer from quadratic blow-up when
many entries have the same dependencies.
cstore: return an immutable borrow from `visible_parent_map`
This prevents an ICE when `visible_parent_map` is called multiple times, for example when an item referenced in an impl signature is imported from an `extern crate` statement occurs within an impl.
Fixes#41053.
r? @eddyb
on-demand-ify `custom_coerce_unsized_kind` and `inherent-impls`
This "on-demand" task both checks for errors and computes the custom unsized kind, if any. This task is only defined on impls of `CoerceUnsized`; invoking it on any other kind of impl results in a bug. This is just to avoid having an `Option`, could easily be changed.
r? @eddyb