@catamorphism, this re-enables threadsafe rustpkg tests, @brson this will fail unless the bots have LLVM rebuilt, so this is a good indicator of whether that happened or not.
Continuation of #7430.
I haven't removed the `map` method, since the replacement `v.iter().transform(f).collect::<~[SomeType]>()` is a little ridiculous at the moment.
With these changes, exchange allocator headers are never initialized, read or written to. Removing the header will now just involve updating the code in trans using an offset to only do it if the type contained is managed.
The only thing blocking removing the initialization of the last field in the header was ~fn since it uses it to store the dynamic size/types due to captures. I temporarily switched it to a `closure_exchange_alloc` lang item (it uses the same `exchange_free`) and #7496 is filed about removing that.
Since the `exchange_free` call is now inlined all over the codebase, I don't think we should have an assert for null. It doesn't currently ever happen, but it would be fine if we started generating code that did do it. The `exchange_free` function also had a comment declaring that it must not fail, but a regular assert would cause a failure. I also removed the atomic counter because valgrind can already find these leaks, and we have valgrind bots now.
Note that exchange free does not currently print an error an out-of-memory when it aborts, because our `io` code may allocate. We could probably get away with a `#[rust_stack]` call to a `stdio` function but it would be better to make a write system call.
Currently we pass all "self" arguments by reference, for the pointer
variants this means that we end up with double indirection which causes
a unnecessary performance hit.
The fix itself is pretty straight-forward and just means that "self"
needs to be handled like any other argument, except for by-value "self"
which still needs to be passed by reference. This is because
non-pointer types can't just be stuffed into the environment slot which
is used to pass "self".
What made things tricky is that there was also a bug in the typechecker
where the method map entries are created. For type impls, that stored
the base type instead of the actual self-type in the method map, e.g.
Foo instead of &Foo for &self. That worked with pass-by-reference, but
fails with pass-by-value which needs the real type.
Code that makes use of methods seems to be about 10% faster with this
change. Also, build times are reduced by about 4%.
Fixes#4355, #4402, #5280, #4406 and #7285
Currently we pass all "self" arguments by reference, for the pointer
variants this means that we end up with double indirection which causes
a unnecessary performance hit.
The fix itself is pretty straight-forward and just means that "self"
needs to be handled like any other argument, except for by-value "self"
which still needs to be passed by reference. This is because
non-pointer types can't just be stuffed into the environment slot which
is used to pass "self".
What made things tricky is that there was also a bug in the typechecker
where the method map entries are created. For type impls, that stored
the base type instead of the actual self-type in the method map, e.g.
Foo instead of &Foo for &self. That worked with pass-by-reference, but
fails with pass-by-value which needs the real type.
Code that makes use of methods seems to be about 10% faster with this
change. Also, build times are reduced by about 4%.
Fixes#4355, #4402, #5280, #4406 and #7285
The code that tried to revoke the cleanup for the self argument tried
to use "llself" to do so, but the cleanup might actually be registered
with a different ValueRef due to e.g. casting. Currently, this is
worked around by early revocation of the cleanup for self in
trans_self_arg.
To handle this correctly, we have to put the ValueRef for the cleanup
into the MethodData, so trans_call_inner can use it to revoke the
cleanup when it's actually supposed to.
"self" is always passed as an opaque box, so there's no point in using
the concrete self type when translating the argument. All it does it
causing the value to be casted back to an opaque box right away.
The commit f9a5453 is meant to be a temporary hold-over. Whether or not there is added a way for the compiler to "implicitly borrow" stack closures in this way, there should be a codegen optimization that prevents having to traverse possibly-very-many function pointers to find the function you ultimately wanted to call. I tried to separate out the changes so this particular commit could be straight-up reverted if auto-borrowing happens in the future.
r? @nikomatsakis
@graydon suggested that once closures not be part of the language for 1.0, but that they might be hidden behind a -Z compile flag as an "experimental feature" in case people decide they need them.
Regardless of whether ```-Z once-fns``` is set, this PR will parse the ```once``` keyword and will prevent closures labelled with it from being called more than once. It will also permit moving out of captured vars in heap closures, just to let the runtime writers stop using ```Cell``` sooner. Setting ```-Z once-fns``` only toggles whether the move-out-from-capture privilege is also given for stack closures.
r? @nikomatsakis