Use the expected type to infer the argument/return types of unboxed closures. Also, in `||` expressions, use the expected type to decide if the result should be a boxed or unboxed closure (and if an unboxed closure, what kind).
This supercedes PR #19089, which was already reviewed by @pcwalton.
region binding at the impl site, so for method types that come from impls,
it is necessary to liberate/instantiate late-bound regions at multiple
depths.
groundwork for better performance.
Key points:
- Separate out determining which method to use from actually selecting
a method (this should enable caching, as well as the pcwalton fast-reject strategy).
- Merge the impl selection back into method resolution and don't rely on
trait matching (this should perform better but also is needed to resolve some
kind of conflicts, see e.g. `method-two-traits-distinguished-via-where-clause.rs`)
- Purge a lot of out-of-date junk and coercions from method lookups.
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
Various miscellaneous changes pushing towards HRTB support:
1. Update parser and adjust ast to support `for<'a,'b>` syntax, both in closures and trait bounds. Warn on the old syntax (not error, for stage0).
2. Refactor TyTrait representation to include a TraitRef.
3. Purge `once_fns` feature gate and `once` keyword.
r? @pcwalton
This is a [breaking-change]:
- The `once_fns` feature is now officially deprecated. Rewrite using normal closures or unboxed closures.
- The new `for`-based syntax now issues warnings (but not yet errors):
- `fn<'a>(T) -> U` becomes `for<'a> fn(T) -> U`
- `<'a> |T| -> U` becomes `for<'a> |T| -> U`
I wanted to embed an `Rc<TraitRef>`, but I was foiled by the current
static rules, which prohibit non-Sync values from being stored in
static locations. This means that the constants for `ty_int` and so
forth cannot be initialized.
This resolves some issues that remained after adding support for monomorphizing unboxed closures in trans.
There were a few places where a set of substitutions for an unboxed closure type were dropped on the floor and later recalculated from scratch based on the def ID, but this failed spectacularly when the closure originated from a different param environment. The substitutions are now plumbed through end-to-end. Closes#18661
There was also a conflict in the meaning of the self param space within the body of the unboxed closure. Trans attempted to insert the unboxed closure type as the self type, but this could conflict with the self type from the param environment when an unboxed closure was used within a default method on a trait. Since the body of an unboxed closure cannot refer to its own self type or value, there's no need for it to actually use the self space. The downstream consumers of the substitutions in trans do not seem to need it either since they look up the type of the closure some other way, so I just stopped setting it. Closes#18685.
r? @pcwalton @nikomatsakis
- When selecting an implicit trait impl for an unboxed closure, plumb
through and use the substitutions from impl selection instead of
using those from the current param environment in trans, which may
be incorrect.
- When generating a function declaration for an unboxed closure, plumb
through the substitutions from the param environment of the closure
as above. Also normalize the type to avoid generating duplicate
declarations due to regions being inconsistently replaced with
ReStatic elsewhere.
- Do not place the closure type in the self param space when
translating the unboxed closure callee, etc. It is not actually
used, and doing so conflicts with the self substitution from
default trait methods.
Closes#18661Closes#18685
variables in the intracrate case. This requires a deeper distinction
between inter- and intra-crate so as to keep coherence working.
I suspect the best fix is to generalize the recursion check that
exists today, but this requires a bit more refactoring to achieve.
(In other words, where today it says OK for an exact match, we'd want
to not detect exact matches but rather skolemize each trait-reference
fresh and return AMBIG -- but that requires us to make builtin bounds
work shallowly like everything else and move the cycle detection into
the fulfillment context.)
* Moves multi-collection files into their own directory, and splits them into seperate files
* Changes exports so that each collection has its own module
* Adds underscores to public modules and filenames to match standard naming conventions
(that is, treemap::{TreeMap, TreeSet} => tree_map::TreeMap, tree_set::TreeSet)
* Renames PriorityQueue to BinaryHeap
* Renames SmallIntMap to VecMap
* Miscellanious fallout fixes
[breaking-change]
This adds a `Substs` field to `ty_unboxed_closure` and plumbs basic
handling of it throughout the compiler. trans now correctly
monomorphizes captured free variables and llvm function defs. This
fixes uses of unboxed closures which reference a free type or region
parameter from their environment in either their signature or free
variables. Closes#16791
This is a large spring-cleaning commit now that the 0.12.0 release has passed removing an amount of deprecated functionality. This removes a number of deprecated crates (all still available as cargo packages in the rust-lang organization) as well as a slew of deprecated functions. All `#[crate_id]` support has also been removed.
I tried to avoid anything that was recently deprecated, but I may have missed something! The major pain points of this commit is the fact that rustc/syntax have `#[allow(deprecated)]`, but I've removed that annotation so moving forward they should be cleaned up as we go.
Spring cleaning is here! In the Fall! This commit removes quite a large amount
of deprecated functionality from the standard libraries. I tried to ensure that
only old deprecated functionality was removed.
This is removing lots and lots of deprecated features, so this is a breaking
change. Please consult the deprecation messages of the deleted code to see how
to migrate code forward if it still needs migration.
[breaking-change]