This commit revisits the `cast` module in libcore and libstd, and scrutinizes
all functions inside of it. The result was to remove the `cast` module entirely,
folding all functionality into the `mem` module. Specifically, this is the fate
of each function in the `cast` module.
* transmute - This function was moved to `mem`, but it is now marked as
#[unstable]. This is due to planned changes to the `transmute`
function and how it can be invoked (see the #[unstable] comment).
For more information, see RFC 5 and #12898
* transmute_copy - This function was moved to `mem`, with clarification that is
is not an error to invoke it with T/U that are different
sizes, but rather that it is strongly discouraged. This
function is now #[stable]
* forget - This function was moved to `mem` and marked #[stable]
* bump_box_refcount - This function was removed due to the deprecation of
managed boxes as well as its questionable utility.
* transmute_mut - This function was previously deprecated, and removed as part
of this commit.
* transmute_mut_unsafe - This function doesn't serve much of a purpose when it
can be achieved with an `as` in safe code, so it was
removed.
* transmute_lifetime - This function was removed because it is likely a strong
indication that code is incorrect in the first place.
* transmute_mut_lifetime - This function was removed for the same reasons as
`transmute_lifetime`
* copy_lifetime - This function was moved to `mem`, but it is marked
`#[unstable]` now due to the likelihood of being removed in
the future if it is found to not be very useful.
* copy_mut_lifetime - This function was also moved to `mem`, but had the same
treatment as `copy_lifetime`.
* copy_lifetime_vec - This function was removed because it is not used today,
and its existence is not necessary with DST
(copy_lifetime will suffice).
In summary, the cast module was stripped down to these functions, and then the
functions were moved to the `mem` module.
transmute - #[unstable]
transmute_copy - #[stable]
forget - #[stable]
copy_lifetime - #[unstable]
copy_mut_lifetime - #[unstable]
[breaking-change]
When a syntax extension is loaded by the compiler, the dylib that is opened may
have other dylibs that it depends on. The dynamic linker must be able to find
these libraries on the system or else the library will fail to load.
Currently, unix gets by with the use of rpaths. This relies on the dylib not
moving around too drastically relative to its dependencies. For windows,
however, this is no rpath available, and in theory unix should work without
rpaths as well.
This modifies the compiler to add all -L search directories to the dynamic
linker's set of load paths. This is currently managed through environment
variables for each platform.
Closes#13848
This alters the borrow checker's requirements on invoking closures from
requiring an immutable borrow to requiring a unique immutable borrow. This means
that it is illegal to invoke a closure through a `&` pointer because there is no
guarantee that is not aliased. This does not mean that a closure is required to
be in a mutable location, but rather a location which can be proven to be
unique (often through a mutable pointer).
For example, the following code is unsound and is no longer allowed:
type Fn<'a> = ||:'a;
fn call(f: |Fn|) {
f(|| {
f(|| {})
});
}
fn main() {
call(|a| {
a();
});
}
There is no replacement for this pattern. For all closures which are stored in
structures, it was previously allowed to invoke the closure through `&self` but
it now requires invocation through `&mut self`.
The standard library has a good number of violations of this new rule, but the
fixes will be separated into multiple breaking change commits.
Closes#12224
As with the previous commits, the Finally trait is primarily implemented for
closures, so the trait was modified from `&self` to `&mut self`. This will
require that any closure variable invoked with `finally` to be stored in a
mutable slot.
[breaking-change]
This removes all resizability support for ~[T] vectors in preparation of DST.
The only growable vector remaining is Vec<T>. In summary, the following methods
from ~[T] and various functions were removed. Each method/function has an
equivalent on the Vec type in std::vec unless otherwise stated.
* slice::OwnedCloneableVector
* slice::OwnedEqVector
* slice::append
* slice::append_one
* slice::build (no replacement)
* slice::bytes::push_bytes
* slice::from_elem
* slice::from_fn
* slice::with_capacity
* ~[T].capacity()
* ~[T].clear()
* ~[T].dedup()
* ~[T].extend()
* ~[T].grow()
* ~[T].grow_fn()
* ~[T].grow_set()
* ~[T].insert()
* ~[T].pop()
* ~[T].push()
* ~[T].push_all()
* ~[T].push_all_move()
* ~[T].remove()
* ~[T].reserve()
* ~[T].reserve_additional()
* ~[T].reserve_exect()
* ~[T].retain()
* ~[T].set_len()
* ~[T].shift()
* ~[T].shrink_to_fit()
* ~[T].swap_remove()
* ~[T].truncate()
* ~[T].unshift()
* ~str.clear()
* ~str.set_len()
* ~str.truncate()
Note that no other API changes were made. Existing apis that took or returned
~[T] continue to do so.
[breaking-change]
Someone reading the docs won't know what the types of various things
are, so this adds them in a few meaningful places to help with
comprehension.
cc #13423.
This commit deals with the fallout of the previous change by making tuples
structs have public fields where necessary (now that the fields are private by
default).
`collections::list::List` was decided in a [team meeting](https://github.com/mozilla/rust/wiki/Meeting-weekly-2014-03-25) that it was unnecessary, so this PR removes it. Additionally, it removes an old and redundant purity test and fixes some warnings.
This commit contains an implementation of synchronous, bounded channels for
Rust. This is an implementation of the proposal made last January [1]. These
channels are built on mutexes, and currently focus on a working implementation
rather than speed. Receivers for sync channels have select() implemented for
them, but there is currently no implementation of select() for sync senders.
Rust will continue to provide both synchronous and asynchronous channels as part
of the standard distribution, there is no intent to remove asynchronous
channels. This flavor of channels is meant to provide an alternative to
asynchronous channels because like green tasks, asynchronous channels are not
appropriate for all situations.
[1] - https://mail.mozilla.org/pipermail/rust-dev/2014-January/007924.html
The proper usage of shared types is now sharing through `&self` rather than
`&mut self` because the mutable version will provide stronger guarantees (no
aliasing on *any* thread).
This weeds out a bunch of warnings building stdtest on windows, and it also adds
a check! macro to the io::fs tests to help diagnose errors that are cropping up
on windows platforms as well.
cc #12516
Two unfortunate allocations were wrapping a proc() in a proc() with
GreenTask::build_start_wrapper, and then boxing this proc in a ~proc() inside of
Context::new(). Both of these allocations were a direct result from two
conditions:
1. The Context::new() function has a nice api of taking a procedure argument to
start up a new context with. This inherently required an allocation by
build_start_wrapper because extra code needed to be run around the edges of a
user-provided proc() for a new task.
2. The initial bootstrap code only understood how to pass one argument to the
next function. By modifying the assembly and entry points to understand more
than one argument, more information is passed through in registers instead of
allocating a pointer-sized context.
This is sadly where I end up throwing mips under a bus because I have no idea
what's going on in the mips context switching code and don't know how to modify
it.
Closes#7767
cc #11389
This also drops support for the managed pointer POISON_ON_FREE feature
as it's not worth adding back the support for it. After a snapshot, the
leftovers can be removed.
This is part of the overall strategy I would like to take when approaching
issue #11165. The only two I/O objects that reasonably want to be "split" are
the network stream objects. Everything else can be "split" by just creating
another version.
The initial idea I had was the literally split the object into a reader and a
writer half, but that would just introduce lots of clutter with extra interfaces
that were a little unnnecssary, or it would return a ~Reader and a ~Writer which
means you couldn't access things like the remote peer name or local socket name.
The solution I found to be nicer was to just clone the stream itself. The clone
is just a clone of the handle, nothing fancy going on at the kernel level.
Conceptually I found this very easy to wrap my head around (everything else
supports clone()), and it solved the "split" problem at the same time.
The cloning support is pretty specific per platform/lib combination:
* native/win32 - uses some specific WSA apis to clone the SOCKET handle
* native/unix - uses dup() to get another file descriptor
* green/all - This is where things get interesting. When we support full clones
of a handle, this implies that we're allowing simultaneous writes
and reads to happen. It turns out that libuv doesn't support two
simultaneous reads or writes of the same object. It does support
*one* read and *one* write at the same time, however. Some extra
infrastructure was added to just block concurrent writers/readers
until the previous read/write operation was completed.
I've added tests to the tcp/unix modules to make sure that this functionality is
supported everywhere.