Don't skip all directories when tidy-checking
This fixes a regression from https://github.com/rust-lang/rust/pull/108772 which basically made it that tidy style checks only `README.md` and `COMPILER_TESTS.md`.
Remove the `NodeId` of `ast::ExprKind::Async`
This is a followup to https://github.com/rust-lang/rust/pull/104833#pullrequestreview-1314537416.
In my original attempt, I was using `LoweringContext::expr`, which was not correct as it creates a fresh `DefId`.
It now uses the correct `DefId` for the wrapping `Expr`, and also makes forwarding `#[track_caller]` attributes more explicit.
Refactor: Separate `LocalRef` variant for not-evaluated-yet operands
As I was reading through this, I noticed that almost every place that was using this needed to distinguish between Some vs None in the match arm anyway, so thought that separating the cases at the variant level might be clearer instead.
I like how it ended up; let me know what you think!
Rollup of 8 pull requests
Successful merges:
- #97506 (Stabilize `nonnull_slice_from_raw_parts`)
- #98651 (Follow C-RW-VALUE in std::io::Cursor example)
- #102742 (Remove unnecessary raw pointer in __rust_start_panic arg)
- #109587 (Use an IndexVec to debug fingerprints.)
- #109613 (fix type suggestions in match arms)
- #109633 (Fix "Directly go to item in search if there is only one result" setting)
- #109635 (debuginfo: Get pointer size/align from tcx.data_layout instead of layout_of)
- #109641 (Don't elaborate non-obligations into obligations)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Don't elaborate non-obligations into obligations
It's suspicious to elaborate a `PolyTraitRef` or `Predicate` into an `Obligation`, since the former does not have a param-env associated with it, but the latter does. This is a footgun that, while not being misused *currently* in the compiler, easily could be misused by someone less familiar with the elaborator's inner workings.
This PR just changes the API -- ideally, the elaborator wouldn't even have to deal with obligations if we're not elaborating obligations, but that would require a bit more abstraction than I could be bothered with today.
debuginfo: Get pointer size/align from tcx.data_layout instead of layout_of
This avoids some type interning and a query execution. It also just makes the code simpler.
Cleanup `codegen_fn_attrs`
The `match` control flow construct has been stable since 1.0, we should use it here.
Sorry for the hard to review diff, I did try to at least split it into two commits. But looking at before-after side-by-side (instead of whatever github is doing) is probably the easiest way to make sure that I didn't forget about anything.
On top of #109088, you can wait for that
Refactor: `VariantIdx::from_u32(0)` -> `FIRST_VARIANT`
Since structs are always `VariantIdx(0)`, there's a bunch of files where the only reason they had `VariantIdx` or `vec::Idx` imported at all was to get the first variant.
So this uses a constant for that, and adds some doc-comments to `VariantIdx` while I'm there, since [it doesn't have any today](https://doc.rust-lang.org/nightly/nightly-rustc/rustc_target/abi/struct.VariantIdx.html).
Still-further-specializable projections are ambiguous in new solver
Fixes https://github.com/rust-lang/rust/pull/108896/files#r1148450781
r? ``@BoxyUwU`` (though feel free to re-roll)
---
This can be used to create an unsound transmute function with the new solver:
```rust
#![feature(specialization)]
trait Default {
type Id;
fn intu(&self) -> &Self::Id;
}
impl<T> Default for T {
default type Id = T;
fn intu(&self) -> &Self::Id {
self
}
}
fn transmute<T: Default<Id = U>, U: Copy>(t: T) -> U {
*t.intu()
}
use std::num::NonZeroU8;
fn main() {
let s = transmute::<u8, Option<NonZeroU8>>(0);
assert_eq!(s, None);
}
```
Permit the MIR inliner to inline diverging functions
This heuristic prevents inlining of `hint::unreachable_unchecked`, which in turn makes `Option/Result::unwrap_unchecked` a bad inlining candidate. I looked through the changes to `core`, `alloc`, `std`, and `hashbrown` by hand and they all seem reasonable. Let's see how this looks in perf...
---
Based on rustc-perf it looks like this regresses ctfe-stress, and the cachegrind diff indicates that this regression is in `InterpCx::statement`. I don't know how to do any deeper analysis because that function is _enormous_ in the try toolchain, which has no debuginfo in it. And a local build produces significantly different codegen for that function, even with LTO.
Since structs are always `VariantIdx(0)`, there's a bunch of files where the only reason they had `VariantIdx` or `vec::Idx` imported at all was to get the first variant.
So this uses a constant for that, and adds some doc-comments to `VariantIdx` while I'm there, since it doesn't have any today.
Refactor `try_execute_query`
This merges `JobOwner::try_start` into `try_execute_query`, removing `TryGetJob` in the processes. 3 new functions are extracted from `try_execute_query`: `execute_job`, `cycle_error` and `wait_for_query`. This makes the control flow a bit clearer and improves performance.
Based on https://github.com/rust-lang/rust/pull/109046.
<table><tr><td rowspan="2">Benchmark</td><td colspan="1"><b>Before</b></th><td colspan="2"><b>After</b></th></tr><tr><td align="right">Time</td><td align="right">Time</td><td align="right">%</th></tr><tr><td>🟣 <b>clap</b>:check</td><td align="right">1.7134s</td><td align="right">1.7061s</td><td align="right"> -0.43%</td></tr><tr><td>🟣 <b>hyper</b>:check</td><td align="right">0.2519s</td><td align="right">0.2510s</td><td align="right"> -0.35%</td></tr><tr><td>🟣 <b>regex</b>:check</td><td align="right">0.9517s</td><td align="right">0.9481s</td><td align="right"> -0.38%</td></tr><tr><td>🟣 <b>syn</b>:check</td><td align="right">1.5389s</td><td align="right">1.5338s</td><td align="right"> -0.33%</td></tr><tr><td>🟣 <b>syntex_syntax</b>:check</td><td align="right">5.9488s</td><td align="right">5.9258s</td><td align="right"> -0.39%</td></tr><tr><td>Total</td><td align="right">10.4048s</td><td align="right">10.3647s</td><td align="right"> -0.38%</td></tr><tr><td>Summary</td><td align="right">1.0000s</td><td align="right">0.9962s</td><td align="right"> -0.38%</td></tr></table>
r? `@cjgillot`
Use poison instead of undef
In cases where it is legal, we should prefer poison values over undef values.
This replaces undef with poison for aggregate construction and for uninhabited types. There are more places where we can likely use poison, but I wanted to stay conservative to start with.
In particular the aggregate case is important for newer LLVM versions, which are not able to handle an undef base value during early optimization due to poison-propagation concerns.
r? `@cuviper`
Make helper functions private in fn_ctxt/adjust_fulfillment_errors
Two helper functions in `rustc_hir_typeck/src/fn_ctxt/adjust_fulfillment_errors.rs` were previously made `pub` impl members, because they were also used in `rustc_hir_typeck/src/fn_ctxt/check.rs` (see #107746).
However, that's no longer the case, so the FIXME suggesting they be made private can now be implemented.
Implement non-const `Destruct` trait in new solver
Makes it so that we can call stdlib methods like `Option::map` in **non-const** environments, since *many* stdlib methods have `Destruct` bounds 😅
This doesn't bother to implement `const Destruct` yet, but it shouldn't be too hard to do so. Just didn't bother since we already don't have much support for const traits in the new solver anyways. I'd be happy to add skeleton support for `const Destruct`, though, if the reviewer desires.