It looks like the target libs aren't actually the same across hosts so instead
of always packaging the target libs from CFG_BUILD take the target libs from the
host if we have them and then only failing that do we take them from CFG_BUILD.
Closes#29228
This commit splits out the standard library from the current 'rustc' package
into a new 'rust-std' package. This is the basis for the work on easily
packaging compilers that can cross-compile to new targets.
Since it isn't possible to disable linkage of just GCC startup objects, we now need logic for finding libc installation directory and copying the required startup files (e.g. crt2.o) to rustlib directory.
Bonus change: use the `-nodefaultlibs` flag on Windows, thus paving the way to direct linker invocation.
* Don't pass `-mno-compact-eh`, apparently not all compilers have this?
* Don't pass `+o32`, apparently LLVm doesn't recognize this
* Use `mipsel-linux-gnu` as a prefix instead of `mipsel-unknown-linux-gnu`, this
matches the ubuntu package at least!
This commit splits out the standard library from the current 'rustc' package
into a new 'rust-std' package. This is the basis for the work on easily
packaging compilers that can cross-compile to new targets.
For most parts, rumprun currently looks like NetBSD, as they share the same
libc and drivers. However, being a unikernel, rumprun does not support
process management, signals or virtual memory, so related functions
might fail at runtime. Stack guards are disabled exactly for this reason.
Code for rumprun is always cross-compiled, it uses always static
linking and needs a custom linker.
We don't actually probe for javac in all circumstances, so if you have
javac installed, but don't have antlr4 installed, and you're on Mac OS
X, then you'll get a message that javac is missing, even though that's
wrong.
To fix this, let's just be a bit more generic in the message, so that
it's the same no matter what part of the lexer tests you're missing.
cc
https://www.reddit.com/r/rust/comments/3m199d/running_make_check_on_the_source_code_says_javac/
These changes introduce the ability to cross-compile working binaries for NetBSD/amd64. Previous support added in PR #26682 shared all its code with the OpenBSD implementation, and was therefore never functional (e.g. linking against non-existing symbols and using wrong type definitions). Nonetheless, the previous patches were a great starting point and made my work significantly easier. 😃
Because there are no stage0 snapshots for NetBSD (yet), I used a cross-compiler for NetBSD 7.0 RC3 and only tested some toy programs (threading and channels, stack guards, a small TCP/IP echo server and some other platform dependent bits). If someone could point me to documentation on how to generate a stage0 snapshot from a cross-compiler I'm happy to run the full test suite.
A few other notes regarding Rust on NetBSD/amd64:
- To preserve binary compatibility, NetBSD introduces new symbols for system call wrappers on breaking ABI changes and keeps the old (legacy) symbols around, see [this documentation](https://www.netbsd.org/docs/internals/en/chap-processes.html#syscalls_master) for some details. I went ahead and modified the `libc` and `std` crate to use the current (renamed) symbols instead of the legacy ones where I found them, but I might have missed some. Notably using the `sigaction` symbol (deprecated in 1998) instead of `__sigaction14` even triggers SIGSYS (bad syscall) on my amd64 setup. I also changed the type definitions to use the most recent version.
- NetBSD's gdb doesn't really support position independent executables, so you might want to turn that off for debugging, see [NetBSD Problem Report #48250](https://gnats.netbsd.org/48250).
- For binaries invoked using a relative path, NetBSD supports `$ORIGIN` only for short `rpath`s (~64 chars or so, I'm told). If running an executable fails with `execname not specified in AUX vector: No such file or directory`, consider invoking the binary using its full absolute path.
By default, the linker in use under OpenBSD is the linker of base, which
don't include /usr/local/lib where libstdc++ of gcc-4.9 lives. We need
to add this directory to linker-path-search (using -L).
Search the path of libstdc++.a, which is a known name (libstdc++.so has
SO_VERSION) in the same directory.
it makes rustc compatible with gcc installation that are using
`--program-transform-name' configure flag (on OpenBSD for example).
- detects at configure the name of stdc++ library on the system
- use the detected name in llvm makefile (with enable-static-stdcpp),
and pass it to mklldeps.py
- generate mklldeps.rs using this detected name
note that CFG_STDCPP_NAME is about stdc++ name, not about libc++. If
using libc++, the default name will be `stdc++', but it won't be used
when linking.
Fix formatting
Remove unused imports
Refactor
Fix msvc build
Fix line lengths
Formatting
Enable backtrace tests
Fix using directive on mac
pwd info
Work-around buildbot PWD bug, and fix libbacktrace configuration
Use alternative to `env -u` which is not supported on bitrig
Disable tests on 32-bit windows gnu
Because 'doc' is a directory, when running `make doc`, you'll see
this:
make: Nothing to be done for `doc'.
By adding a target for `doc` to build `docs`, both work.
Fixes#14705
Because 'doc' is a directory, when running `make doc`, you'll see
this:
make: Nothing to be done for `doc'.
By adding a target for `doc` to build `docs`, both work.
Fixes#14705
This fixes the case where we try to re-build & re-install rust to the
same prefix (without uninstalling) while using an llvm-root that is the
same as the prefix.
Without this, builds like that fail with:
'error: multiple dylib candidates for `std` found'
See https://github.com/jmesmon/meta-rust/issues/6 for some details.
May also be related to #20342.
This commit is an implementation of [RFC 1183][rfc] which allows swapping out
the default allocator on nightly Rust. No new stable surface area should be
added as a part of this commit.
[rfc]: https://github.com/rust-lang/rfcs/pull/1183
Two new attributes have been added to the compiler:
* `#![needs_allocator]` - this is used by liballoc (and likely only liballoc) to
indicate that it requires an allocator crate to be in scope.
* `#![allocator]` - this is a indicator that the crate is an allocator which can
satisfy the `needs_allocator` attribute above.
The ABI of the allocator crate is defined to be a set of symbols that implement
the standard Rust allocation/deallocation functions. The symbols are not
currently checked for exhaustiveness or typechecked. There are also a number of
restrictions on these crates:
* An allocator crate cannot transitively depend on a crate that is flagged as
needing an allocator (e.g. allocator crates can't depend on liballoc).
* There can only be one explicitly linked allocator in a final image.
* If no allocator is explicitly requested one will be injected on behalf of the
compiler. Binaries and Rust dylibs will use jemalloc by default where
available and staticlibs/other dylibs will use the system allocator by
default.
Two allocators are provided by the distribution by default, `alloc_system` and
`alloc_jemalloc` which operate as advertised.
Closes#27389
New enough find on Linux doesn't support "-perm +..." and suggests
using "-perm /..." instead, but that doesn't work on Windows.
Hopefully all platforms are happy with this expanded version.
I don't have access to a Windows development system to test this, so someone needs to verify that this actually works there before merging.
Closes#19981.
Per @steveklabnik's comment [here](https://github.com/rust-lang/cargo/issues/739#issuecomment-130085860), the Pandoc components of the Makefile are no longer used, and as such the corresponding components of the documentation are out of date.
- I've removed the Pandoc (and therefore also LaTeX) elements of the makefile and confirmed that the build proceeds correctly.
- I updated the documentation to reference `rustdoc` and of Pandoc.
r? @steveklabnik
Pretty-printed files sometimes start with #![some_feature], which
looks like a shebang line and confuses Windows builds into thinking
they are executables.
This commit leverages the runtime support for DWARF exception info added
in #27210 to enable unwinding by default on 64-bit MSVC. This also additionally
adds a few minor fixes here and there in the test harness and such to get
`make check` entirely passing on 64-bit MSVC:
* The invocation of `maketest.py` now works with spaces/quotes in CC
* debuginfo tests are disabled on MSVC
* A link error for librustc was hacked around (see #27438)
This commit leverages the runtime support for DWARF exception info added
in #27210 to enable unwinding by default on 64-bit MSVC. This also additionally
adds a few minor fixes here and there in the test harness and such to get
`make check` entirely passing on 64-bit MSVC:
* The invocation of `maketest.py` now works with spaces/quotes in CC
* debuginfo tests are disabled on MSVC
* A link error for librustc was hacked around (see #27438)
I have no idea how bors keeps working without this - I can only assume it's some peculiarity of how windows searches for DLLs.
Without this change, running `make check` on windows will not correctly set PATH to include eg. `x86_64-pc-windows-gnu\stage1\bin\rustlib\x86_64-pc-windows-gnu\lib`, and when it tries to run eg. `stage1/test/stdtest-x86_64-pc-windows-gnu.exe`, it will fail because windows can't find the DLLs on which it relies.
It seems to be just a mistake: when the equivalent was added for the branch that deals with unix-like platforms, the windows branch was left unchanged.
This means that we no longer need to ship the `llvm-ar.exe` binary in the MSVC
distribution, and after a snapshot we can remove a good bit of logic from the
makefiles!
Rust's current compilation model makes it impossible on Windows to generate one
object file with a complete and final set of dllexport annotations. This is
because when an object is generated the compiler doesn't actually know if it
will later be included in a dynamic library or not. The compiler works around
this today by flagging *everything* as dllexport, but this has the drawback of
exposing too much.
Thankfully there are alternate methods of specifying the exported surface area
of a dll on Windows, one of which is passing a `*.def` file to the linker which
lists all public symbols of the dynamic library. This commit removes all
locations that add `dllexport` to LLVM variables and instead dynamically
generates a `*.def` file which is passed to the linker. This file will include
all the public symbols of the current object file as well as all upstream
libraries, and the crucial aspect is that it's only used when generating a
dynamic library. When generating an executable this file isn't generated, so all
the symbols aren't exported from an executable.
To ensure that statically included native libraries are reexported correctly,
the previously added support for the `#[linked_from]` attribute is used to
determine the set of FFI symbols that are exported from a dynamic library, and
this is required to get the compiler to link correctly.
This means that we no longer need to ship the `llvm-ar.exe` binary in the MSVC
distribution, and after a snapshot we can remove a good bit of logic from the
makefiles!