***Edit: Fixed now.*** I'm pretty sure the way I'm using LLVMReplaceAllUsesWith here is
unsafe... but before I figure out how to fix that, I'd like a
reality-check: is this actually useful?
This introduces a test for #23389 and improves the error behaviour to treat the malformed LHS as an error, not a compiler bug.
The parse phase that precedes the call to `check_lhs_nt_follows` could possibly be enhanced to police the format itself (which the old code suggests was the original intention), but I'm not sure that's any nicer than just parsing the matcher as generic rust code and then policing the specific requirements for being a macro matcher afterwards (as this does).
Fixes#23389
Macro desugaring of `in PLACE { BLOCK }` into "simpler" expressions following the in-development "Placer" protocol.
Includes Placer API that one can override to integrate support for `in` into one's own type. (See [RFC 809].)
[RFC 809]: https://github.com/rust-lang/rfcs/blob/master/text/0809-box-and-in-for-stdlib.md
Part of #22181
Replaced PR #26180.
Turns on the `in PLACE { BLOCK }` syntax, while leaving in support for the old `box (PLACE) EXPR` syntax (since we need to support that at least until we have a snapshot with support for `in PLACE { BLOCK }`.
(Note that we are not 100% committed to the `in PLACE { BLOCK }` syntax. In particular I still want to play around with some other alternatives. Still, I want to get the fundamental framework for the protocol landed so we can play with implementing it for non `Box` types.)
----
Also, this PR leaves out support for desugaring-based `box EXPR`. We will hopefully land that in the future, but for the short term there are type-inference issues injected by that change that we want to resolve separately.
(Over time the stability checking has gotten more finicky; in
particular one must attach the (whole) span of the original `in PLACE
BLOCK` expression to the injected references to unstable paths, as
noted in the comments.)
call `push_compiler_expansion` during the placement-`in` expansion.
Even after expansion, the generated expressions still track depth of
such pushes (i.e. how often you have "pushed" without a corresponding
"pop"), and we add a rule that in a context with a positive
`push_unsafe!` depth, it is effectively an `unsafe` block context.
(This way, we can inject code that uses `unsafe` features, but still
contains within it a sub-expression that should inherit the outer
safety checking setting, outside of the injected code.)
This is a total hack; it not only needs a feature-gate, but probably
should be feature-gated forever (if possible).
ignore-pretty in test/run-pass/pushpop-unsafe-okay.rs
So if a filemap's last byte is at position n in the codemap, then n+1 will not refer to any filemap, and the next filemap will begin an n+2.
This is useful for empty files, it means that every file (even empty ones) has a byte in the codemap.
Closes#23301, #26504
This commit ensures that the rustc thread does not leak a panic message whenever
a call to `fatal` happens. This already happens for the main rustc thread as
part of the `rustc_driver::monitor` function, but the compiler also spawns
threads for other operations like `-C codegen-units`, and sometimes errors are
emitted on these threads as well. To ensure that there's a consistent
error-handling experience across threads this unifies these two to never print
the panic message in the case of a normal and expected fatal error.
This should also fix the flaky `asm-src-loc-codegen-units.rs` test as the output
is sometimes garbled if diagnostics are printed while the panic message is also
being printed.
Fixes#23812 by stripping the decoration when desugaring macro doc comments into #[doc] attributes, and detects whether the attribute should be inner or outer style and outputs the appropriate token tree.
This commit ensures that the rustc thread does not leak a panic message whenever
a call to `fatal` happens. This already happens for the main rustc thread as
part of the `rustc_driver::monitor` function, but the compiler also spawns
threads for other operations like `-C codegen-units`, and sometimes errors are
emitted on these threads as well. To ensure that there's a consistent
error-handling experience across threads this unifies these two to never print
the panic message in the case of a normal and expected fatal error.
This should also fix the flaky `asm-src-loc-codegen-units.rs` test as the output
is sometimes garbled if diagnostics are printed while the panic message is also
being printed.
`EmitterWriter::print_maybe_styled` was basically always used with `format!`, so
this macro makes some code cleaner. It should also remove some unnecessary
allocations (most `print_maybe_styled` invocations allocated a `String`
previously, whereas the new macro uses `write_fmt` to write the formatted string
directly to the terminal).
This probably could have been part of #26838, but it’s too late now.
Escape sequences in documentation comments must not be parsed as a normal string when expanding a macro, otherwise some innocent but invalid-escape-sequence-looking comments will trigger an ICE.
Although this commit replaces normal string literals with raw string literals in macro expansion, this shouldn't be much a problem considering documentation comments are converted into attributes before being passed to a macro anyways.
Fixes#25929.
Fixes#25943.
This commit expands the follow set of the `ty` and `path` macro fragments to
include the semicolon token as well. A semicolon is already allowed after these
tokens, so it's currently a little too restrictive to not have a semicolon
allowed. For example:
extern {
fn foo() -> i32; // semicolon after type
}
fn main() {
struct Foo;
Foo; // semicolon after path
}
Inspired by the now-mysteriously-closed https://github.com/rust-lang/rust/pull/26782.
This PR introduces better error messages when unicode escapes have invalid format (e.g. `\uFFFF`). It also makes rustc always tell the user that escape may not be used in byte-strings and bytes and fixes some spans to not include unecessary characters and include escape backslash in some others.
This commit expands the follow set of the `ty` and `path` macro fragments to
include the semicolon token as well. A semicolon is already allowed after these
tokens, so it's currently a little too restrictive to not have a semicolon
allowed. For example:
extern {
fn foo() -> i32; // semicolon after type
}
fn main() {
struct Foo;
Foo; // semicolon after path
}
This improves diagnostic messages when \u escape is used incorrectly and { is
missing. Instead of saying “unknown character escape: u”, it will now report
that unicode escape sequence is incomplete and suggest what the correct syntax
is.
Escape sequences in documentation comments must not be parsed as a
normal string when expanding a macro, otherwise some innocent but
invalid-escape-sequence-looking comments will trigger an ICE.
Although this commit replaces normal string literals with raw string
literals in macro expansion, this shouldn't be much a problem
considering documentation comments are converted into attributes before
being passed to a macro anyways.
Fixes#25929.
Fixes#25943.
In a followup to PR #26849, improve one more location for I/O where
we can use `Vec::resize` to ensure better performance when zeroing
buffers.
Use the `vec![elt; n]` macro everywhere we can in the tree. It replaces
`repeat(elt).take(n).collect()` which is more verbose, requires type
hints, and right now produces worse code. `vec![]` is preferable for vector
initialization.
The `vec![]` replacement touches upon one I/O path too, Stdin::read
for windows, and that should be a small improvement.
r? @alexcrichton
The common pattern `iter::repeat(elt).take(n).collect::<Vec<_>>()` is
exactly equivalent to `vec![elt; n]`, do this replacement in the whole
tree.
(Actually, vec![] is smart enough to only call clone n - 1 times, while
the former solution would call clone n times, and this fact is
virtually irrelevant in practice.)
Fixes#23302.
Note that there's an odd situation regarding the following, most likely due to some inadequacy in `const_eval`:
```rust
enum Y {
A = 1usize,
B,
}
```
In this case, `Y::B as usize` might be considered a constant expression in some cases, but not others. (See #23513, for a related problem where there is only one variant, with no discriminant, and it doesn't behave nicely as a constant expression either.)
Most of the complexity in this PR is basically future-proofing, to ensure that when `Y::B as usize` is fully made to be a constant expression, it can't be used to set `Y::A`, and thus indirectly itself.
As per #26009 this PR implements a new collation system for extended-error metadata. I've tried to keep it as simple as possible for now, so there's no uniqueness checking and minimal modularity.
Although using a lint was discussed in #26009 I decided against this because it would require converting the AST output from the plugin back into an internal data-structure. Emitting the metadata from within the plugin prevents this double-handling. We also didn't identify this as the source of the failures last time, although something untoward was definitely happening... With that in mind I would like as much feedback as possible on this before it's merged, I don't want to break the bots again!
I've successfully built for my host architecture and I'm building an ARM cross-compiler now to test my assumptions about the various `CFG` variables. Despite the confusing name of `CFG_COMPILER_HOST_TRIPLE` it is actually the compile time target triple, as explained in `mk/target.mk`.
```
# This is the compile-time target-triple for the compiler. For the compiler at
# runtime, this should be considered the host-triple. More explanation for why
# this exists can be found on issue #2400
export CFG_COMPILER_HOST_TRIPLE
```
CC @pnkfelix @brson @nrc @alexcrichton
Closes#25705, closes#26009.
It now says '#[feature] may not be used on the stable release channel'.
I had to convert this error from a lint to a normal compiler error.
I left the lint previously-used for this in place since removing it is
a breaking change. It will just go unused until the end of time.
Fixes#24125
It now says '#[feature] may not be used on the stable release channel'.
I had to convert this error from a lint to a normal compiler error.
I left the lint previously-used for this in place since removing it is
a breaking change. It will just go unused until the end of time.
Fixes#24125
This commit shards the all-encompassing `core`, `std_misc`, `collections`, and `alloc` features into finer-grained components that are much more easily opted into and tracked. This reflects the effort to push forward current unstable APIs to either stabilization or removal. Keeping track of unstable features on a much more fine-grained basis will enable the library subteam to quickly analyze a feature and help prioritize internally about what APIs should be stabilized.
A few assorted APIs were deprecated along the way, but otherwise this change is just changing the feature name associated with each API. Soon we will have a dashboard for keeping track of all the unstable APIs in the standard library, and I'll also start making issues for each unstable API after performing a first-pass for stabilization.
This commit shards the broad `core` feature of the libcore library into finer
grained features. This split groups together similar APIs and enables tracking
each API separately, giving a better sense of where each feature is within the
stabilization process.
A few minor APIs were deprecated along the way:
* Iterator::reverse_in_place
* marker::NoCopy
The new code generated for deriving on enums looks something like this:
```rust
let __self0_vi = unsafe {
std::intrinsics::discriminant_value(&self) } as i32;
let __self1_vi = unsafe {
std::intrinsics::discriminant_value(&__arg1) } as i32;
let __self2_vi = unsafe {
std::intrinsics::discriminant_value(&__arg2) } as i32;
///
if __self0_vi == __self1_vi && __self0_vi == __self2_vi && ... {
match (...) {
(Variant1, Variant1, ...) => Body1
(Variant2, Variant2, ...) => Body2,
...
_ => ::core::intrinsics::unreachable()
}
}
else {
... // catch-all remainder can inspect above variant index values.
}
```
This helps massively for C-like enums since they will be compiled as a
single comparison giving observed speedups of up to 8x. For more complex
enums the speedup is more difficult to measure but it should not be
slower to generate code this way regardless.
Issue: https://github.com/rust-lang/rust/issues/25969
Compare the span on the stable branch (correct) with the span on the nightly branch (incorrect) for the following example: http://is.gd/lTAo9c. This pull request fixes the regression.
@Manishearth has been kind enough to pitch some ideas for a regression test, mainly revolving around testing the span in compile-fail test, but this has proven unsuccessful. Other suggestions/ ideas would be much appreciated!
This was always a weird feature, and isn't being used in the compiler.
Static assertions should be done better than this.
This implements RFC #1096.
Fixes#13951Fixes#23008Fixes#6676
This is behind a feature gate, but that's still a
[breaking-change]
Currently, for `use` declarations with multiple paths, only the `use` item itself is saved in the AST map, not the individual path nodes. This can lead to a problem when a span of a specific path node is needed.
For example, #24818 caused an ICE because of this, in `ImportResolver::check_for_conflicting_import()`.
Fixes#25763.
Needed to support:
```rust
match X {
pattern if Y ...
}
for pattern in Y {}
```
IMO, this shouldn't require an RFC because it can't interfere with any future language changes (because `pattern if` and `pattern in` are already legal in rust) and can't cause any ambiguity.
Currently, for `use` declarations with multiple paths, only the `use`
item itself is saved in the AST map, not the individual path nodes. This
can lead to a problem when a span of a specific path node is needed.
For example, #24818 caused an ICE because of this, in
`ImportResolver::check_for_conflicting_import()`.
Fixes#25763.
This is a port of @eddyb's `const-fn` branch. I rebased it, tweaked a few things, and added tests as well as a feature gate. The set of tests is still pretty rudimentary, I'd appreciate suggestions on new tests to write. Also, a double-check that the feature-gate covers all necessary cases.
One question: currently, the feature-gate allows the *use* of const functions from stable code, just not the definition. This seems to fit our usual strategy, and implies that we might (perhaps) allow some constant functions in libstd someday, even before stabilizing const-fn, if we were willing to commit to the existence of const fns but found some details of their impl unsatisfactory.
r? @pnkfelix
fixes#25683
I have a very nonscientific measurement of the data via valgrind/massif [here](https://gist.github.com/Manishearth/4c47f15f6835cb3957c4)
I measured the memory usage for both --pretty=expanded and -Z no-trans
It *seems* like there's a 20-25MB decrease during expansion on stage2 librustc; but I'm not quite sure.
r? @eddyb
(have not yet run tests, but it compiles fine, might want to wait before giving r+)
cc @nrc @huon
- add feature gate
- add basic tests
- adjust parser to eliminate conflict between `const fn` and associated
constants
- allow `const fn` in traits/trait-impls, but forbid later in type check
- correct some merge conflicts
This allows compiling entire crates from memory or preprocessing source files before they are tokenized.
Minor API refactoring included, which is a [breaking-change] for libsyntax users:
* `ParseSess::{next_node_id, reserve_node_ids}` moved to rustc's `Session`
* `new_parse_sess` -> `ParseSess::new`
* `new_parse_sess_special_handler` -> `ParseSess::with_span_handler`
* `mk_span_handler` -> `SpanHandler::new`
* `default_handler` -> `Handler::new`
* `mk_handler` -> `Handler::with_emitter`
* `string_to_filemap(sess source, path)` -> `sess.codemap().new_filemap(path, source)`
It is currently broken to use syntax such as `<T as Foo>::U::static_method()` where `<T as Foo>::U` is an associated type. I was able to fix this and simplify the parser a bit at the same time.
This also fixes the corresponding issue with associated types (#22139), but that's somewhat irrelevant because #22519 is still open, so this syntax still causes an error in type checking.
Similarly, although this fix applies to associated consts, #25046 forbids associated constants from using type parameters or `Self`, while #19559 means that associated types have to always have one of those two. Therefore, I think that you can't use an associated const from an associated type anyway.
There were still some mentions of `~[T]` and `~T`, mostly in comments and debugging statements. I tried to do my best to preserve meaning, but I might have gotten some wrong-- I'm happy to fix anything :)
I've found that there are still huge amounts of occurrences of `task`s in the documentation. This PR tries to eliminate all of them in favor of `thread`.
An automated script was run against the `.rs` and `.md` files,
subsituting every occurrence of `task` with `thread`. In the `.rs`
files, only the texts in the comment blocks were affected.
There are two interesting kinds of breakage illustrated here:
1. `Box<Trait>` in many contexts is treated as `Box<Trait + 'static>`,
due to [RFC 599]. However, in a type like `&'a Box<Trait>`, the
`Box<Trait>` type will be expanded to `Box<Trait + 'a>`, again due
to [RFC 599]. This, combined with the fix to Issue 25199, leads to
a borrowck problem due the combination of this function signature
(in src/libstd/net/parser.rs):
```rust
fn read_or<T>(&mut self, parsers: &mut [Box<FnMut(&mut Parser) -> Option<T>>]) -> Option<T>;
```
with this call site (again in src/libstd/net/parser.rs):
```rust
fn read_ip_addr(&mut self) -> Option<IpAddr> {
let ipv4_addr = |p: &mut Parser| p.read_ipv4_addr().map(|v4| IpAddr::V4(v4));
let ipv6_addr = |p: &mut Parser| p.read_ipv6_addr().map(|v6| IpAddr::V6(v6));
self.read_or(&mut [Box::new(ipv4_addr), Box::new(ipv6_addr)])
}
```
yielding borrowck errors like:
```
parser.rs:265:27: 265:69 error: borrowed value does not live long enough
parser.rs:265 self.read_or(&mut [Box::new(ipv4_addr), Box::new(ipv6_addr)])
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
(full log at: https://gist.github.com/pnkfelix/e2e80f1a71580f5d3103 )
The issue here is perhaps subtle: the `parsers` argument is
inferred to be taking a slice of boxed objects with the implicit
lifetime bound attached to the `self` parameter to `read_or`.
Meanwhile, the fix to Issue 25199 (added in a forth-coming commit)
is forcing us to assume that each boxed object may have a
destructor that could refer to state of that lifetime, and
*therefore* that inferred lifetime is required to outlive the boxed
object itself.
In this case, the relevant boxed object here is not going to make
any such references; I believe it is just an artifact of how the
expression was built that it is not assigned type:
`Box<FnMut(&mut Parser) -> Option<T> + 'static>`.
(i.e., mucking with the expression is probably one way to fix this
problem).
But the other way to fix it, adopted here, is to change the
`read_or` method type to force make the (presumably-intended)
`'static` bound explicit on the boxed `FnMut` object.
(Note: this is still just the *first* example of breakage.)
2. In `macro_rules.rs`, the `TTMacroExpander` trait defines a method
with signature:
```rust
fn expand<'cx>(&self, cx: &'cx mut ExtCtxt, ...) -> Box<MacResult+'cx>;
```
taking a `&'cx mut ExtCtxt` as an argument and returning a
`Box<MacResult'cx>`.
The fix to Issue 25199 (added in aforementioned forth-coming
commit) assumes that a value of type `Box<MacResult+'cx>` may, in
its destructor, refer to a reference of lifetime `'cx`; thus the
`'cx` lifetime is forced to outlive the returned value.
Meanwhile, within `expand.rs`, the old code was doing:
```rust
match expander.expand(fld.cx, ...).make_pat() { ... => immutable borrow of fld.cx ... }
```
The problem is that the `'cx` lifetime, inferred for the
`expander.expand` call, has now been extended so that it has to
outlive the temporary R-value returned by `expanded.expand`. But
call is also reborrowing `fld.cx` *mutably*, which means that this
reborrow must end before any immutable borrow of `fld.cx`; but
there is one of those within the match body. (Note that the
temporary R-values for the input expression to `match` all live as
long as the whole `match` expression itself (see Issue #3511 and PR
#11585).
To address this, I moved the construction of the pat value into its
own `let`-statement, so that the `Box<MacResult>` will only live
for as long as the initializing expression for the `let`-statement,
and thus allow the subsequent immutable borrow within the `match`.
[RFC 599]: https://github.com/rust-lang/rfcs/blob/master/text/0599-default-object-bound.md
Guard against overflow in `codemap::span_to_lines`.
(Revised/expanded version of PR #24976)
Make `span_to_lines` to return a `Result`.
In `diagnostic`, catch `Err` from `span_to_lines` and print `"(unprintable span)"` instead.
----
There a number of recent issues that report the bug here. See e.g. #24761 and #24954.
This change *might* fix them. However, that is *not* its main goal. The main goals are:
1. Make it possible for callers to recover from an error here, and
2. Insert a more conservative check, in that we are also checking that the files match up.
----
As a drive-by, fix#24997 , which was causing my attempts to `make check-stage1` on an `--enable-debug` build to fail.
Make `span_to_lines` to return a `Result`.
(This is better than just asserting internally, since it allows caller
to decide if they can recover from the problem.)
Added type alias for `FileLinesResult` returned by `span_to_lines`.
Update embedded unit test to reflect `span_to_lines` signature change.
In diagnostic, catch `Err` from `span_to_lines` and print
`"(internal compiler error: unprintable span)"` instead.
----
There a number of recent issues that report the bug here. See
e.g. #24761 and #24954.
This change *might* fix them. However, that is not its main goal.
The main goals are:
1. Make it possible for callers to recover from an error here, and
2. Insert a more conservative check, in that we are
also checking that the files match up.
Adds an `attrs` field to `FieldInfo` which lets one check the attributes on
a field whilst expanding.
This lets deriving plugins be more robust, for example providing the ability to
"ignore" a field for the purpose of deriving, or perhaps handle the field a
different way.
r? @huonw
collections: Implement String::drain(range) according to RFC 574
`.drain(range)` is unstable and under feature(collections_drain).
This adds a safe way to remove any range of a String as efficiently as
possible.
As noted in the code, this drain iterator has none of the memory safety
issues of the vector version.
RFC tracking issue is #23055
Hi! While researching stuff for the reference and the grammar, I came across a few mentions of using the `priv` keyword that was removed in 0.11.0 (#13547, #8122, rust-lang/rfcs#26, [RFC 0026](https://github.com/rust-lang/rfcs/blob/master/text/0026-remove-priv.md)).
One occurrence is a mention in the reference, a few are in comments, and a few are marking test functions. I left the test that makes sure you can't name an ident `priv` since it's still a reserved keyword. I did a little grepping around for `priv `, priv in backticks, `Private` etc and I think the remaining instances are fine, but if anyone knows anywhere in particular I should check for any other lingering mentions of `priv`, please let me know and I would be happy to! 🍂🌊
I've been working on improving the diagnostic registration system so that it can:
* Check uniqueness of error codes *across the whole compiler*. The current method using `errorck.py` is prone to failure as it relies on simple text search - I found that it breaks when referencing an error's ident within a string (e.g. `"See also E0303"`).
* Provide JSON output of error metadata, to eventually facilitate HTML output, as well as tracking of which errors need descriptions. The current schema is:
```
<error code>: {
"description": <long description>,
"use_site": {
"filename": <filename where error is used>,
"line": <line in file where error is used>
}
}
```
[Here's][metadata-dump] a pretty-printed sample dump for `librustc`.
One thing to note is that I had to move the diagnostics arrays out of the diagnostics modules. I really wanted to be able to capture error usage information, which only becomes available as a crate is compiled. Hence all invocations of `__build_diagnostics_array!` have been moved to the ends of their respective `lib.rs` files. I tried to avoid moving the array by making a plugin that expands to nothing but couldn't invoke it in item position and gave up on hackily generating a fake item. I also briefly considered using a lint, but it seemed like it would impossible to get access to the data stored in the thread-local storage.
The next step will be to generate a web page that lists each error with its rendered description and use site. Simple mapping and filtering of the metadata files also allows us to work out which error numbers are absent, which errors are unused and which need descriptions.
[metadata-dump]: https://gist.github.com/michaelsproul/3246846ff1bea71bd049
Closes#17841.
The majority of the work should be done, e.g. trait and inherent impls, different forms of UFCS syntax, defaults, and cross-crate usage. It's probably enough to replace the constants in `f32`, `i8`, and so on, or close to good enough.
There is still some significant functionality missing from this commit:
- ~~Associated consts can't be used in match patterns at all. This is simply because I haven't updated the relevant bits in the parser or `resolve`, but it's *probably* not hard to get working.~~
- Since you can't select an impl for trait-associated consts until partway through type-checking, there are some problems with code that assumes that you can check constants earlier. Associated consts that are not in inherent impls cause ICEs if you try to use them in array sizes or match ranges. For similar reasons, `check_static_recursion` doesn't check them properly, so the stack goes ka-blooey if you use an associated constant that's recursively defined. That's a bit trickier to solve; I'm not entirely sure what the best approach is yet.
- Dealing with consts associated with type parameters will raise some new issues (e.g. if you have a `T: Int` type parameter and want to use `<T>::ZERO`). See rust-lang/rfcs#865.
- ~~Unused associated consts don't seem to trigger the `dead_code` lint when they should. Probably easy to fix.~~
Also, this is the first time I've been spelunking in rustc to such a large extent, so I've probably done some silly things in a couple of places.
This changes the `ToTokens` implementations for expressions, statements,
etc. with almost-trivial ones that produce `Interpolated(*Nt(...))`
pseudo-tokens. In this way, quasiquote now works the same way as macros
do: already-parsed AST fragments are used as-is, not reparsed.
The `ToSource` trait is removed. Quasiquote no longer involves
pretty-printing at all, which removes the need for the
`encode_with_hygiene` hack. All associated machinery is removed.
A new `Nonterminal` is added, NtArm, which the parser now interpolates.
This is just for quasiquote, not macros (although it could be in the
future).
`ToTokens` is no longer implemented for `Arg` (although this could be
added again) and `Generics` (which I don't think makes sense).
This breaks any compiler extensions that relied on the ability of
`ToTokens` to turn AST fragments back into inspectable token trees. For
this reason, this closes#16987.
As such, this is a [breaking-change].
Fixes#16472.
Fixes#15962.
Fixes#17397.
Fixes#16617.
As part of the audit for #22820 the following feature gate tests have been
added:
* `negate_unsigned`
* `on_unimplemented`
* `optin_builtin_traits`
* `plugin`
* `rustc_attrs`
* `rustc_diagnostic_macros`
* `slice_patterns`
In addition some feature gate error message typos fixed.
Changes the style guidelines regarding unit tests to recommend using a
sub-module named "tests" instead of "test" for unit tests as "test"
might clash with imports of libtest.
This PR uses the inline error suggestions introduced in #24242 to modify a few existing `help` messages. The new errors look like this:
foobar.rs:5:12: 5:25 error: expected a path on the left-hand side of `+`,
not `&'static Copy` [E0178]
foobar.rs:5 let x: &'static Copy + 'static;
^~~~~~~~~~~~~
foobar.rs:5:12: 5:35 help: try adding parentheses (per RFC 438):
foobar.rs: let x: &'static (Copy + 'static);
foobar.rs:2:13: 2:23 error: cast to unsized type: `&_` as `core::marker::Copy`
foobar.rs:2 let x = &1 as Copy;
^~~~~~~~~~
foobar.rs:2:19: 2:23 help: try casting to a reference instead:
foobar.rs: let x = &1 as &Copy;
foobar.rs:7:24: 7:25 error: expected expression, found `;`
foobar.rs:7 let x = box (1 + 1);
^
foobar.rs:7:13: 7:16 help: try using `box()` instead:
foobar.rs: let x = box() (1 + 1);
This also modifies compiletest to give the ability to directly test suggestions given by error messages.
This commit removes all the old casting/generic traits from `std::num` that are
no longer in use by the standard library. This additionally removes the old
`strconv` module which has not seen much use in quite a long time. All generic
functionality has been supplanted with traits in the `num` crate and the
`strconv` module is supplanted with the [rust-strconv crate][rust-strconv].
[rust-strconv]: https://github.com/lifthrasiir/rust-strconv
This is a breaking change due to the removal of these deprecated crates, and the
alternative crates are listed above.
[breaking-change]
PR #24242 added the ability to the compiler to directly give suggestions about
how to modify code to fix an error. The new errors look like this:
foobar.rs:5:12: 5:25 error: expected a path on the left-hand side of `+`,
not `&'static Copy` [E0178]
foobar.rs:5 let x: &'static Copy + 'static;
^~~~~~~~~~~~~
foobar.rs:5:12: 5:35 help: try adding parentheses (per RFC 438):
foobar.rs: let x: &'static (Copy + 'static);
foobar.rs:2:13: 2:23 error: cast to unsized type: `&_` as `core::marker::Copy`
foobar.rs:2 let x = &1 as Copy;
^~~~~~~~~~
foobar.rs:2:19: 2:23 help: try casting to a reference instead:
foobar.rs: let x = &1 as &Copy;
foobar.rs:7:24: 7:25 error: expected expression, found `;`
foobar.rs:7 let x = box (1 + 1);
^
foobar.rs:7:13: 7:16 help: try using `box()` instead:
foobar.rs: let x = box() (1 + 1);
This also modifies compiletest to give the ability to directly test suggestions
given by error messages.
I did a manual merge of all the extended error PRs as we were getting merge conflicts yesterday. I think this is preferable to merging separately as I ended up having to manually merge @nham and @GuillaumeGomez's commits.
Rollup of #24458, #24482 and #24488.
#24482 and #24488 were already re-approved, and would need to be cancelled if this is merged instead.
This patch
1. renames libunicode to librustc_unicode,
2. deprecates several pieces of libunicode (see below), and
3. removes references to deprecated functions from
librustc_driver and libsyntax. This may change pretty-printed
output from these modules in cases involving wide or combining
characters used in filenames, identifiers, etc.
The following functions are marked deprecated:
1. char.width() and str.width():
--> use unicode-width crate
2. str.graphemes() and str.grapheme_indices():
--> use unicode-segmentation crate
3. str.nfd_chars(), str.nfkd_chars(), str.nfc_chars(), str.nfkc_chars(),
char.compose(), char.decompose_canonical(), char.decompose_compatible(),
char.canonical_combining_class():
--> use unicode-normalization crate
This patch
1. renames libunicode to librustc_unicode,
2. deprecates several pieces of libunicode (see below), and
3. removes references to deprecated functions from
librustc_driver and libsyntax. This may change pretty-printed
output from these modules in cases involving wide or combining
characters used in filenames, identifiers, etc.
The following functions are marked deprecated:
1. char.width() and str.width():
--> use unicode-width crate
2. str.graphemes() and str.grapheme_indices():
--> use unicode-segmentation crate
3. str.nfd_chars(), str.nfkd_chars(), str.nfc_chars(), str.nfkc_chars(),
char.compose(), char.decompose_canonical(), char.decompose_compatible(),
char.canonical_combining_class():
--> use unicode-normalization crate
This is a little bit tricky, since with include_str!, we know that we
are including utf-8 content, so it's safe to store the source as a
String in a FileMap. We don't know that for include_bytes!, but I don't
think we actually need to track the contents anyways, so I'm passing "".
new_filemap does check for the zero length content, and it should be
reasonable, howeven I'm not sure if it would be better to pass None
instead of Some(Rc::new("")) as the src component of a FileMap.
Fixes bug #24348
This is a little bit tricky, since with include_str!, we know that we
are including utf-8 content, so it's safe to store the source as a
String in a FileMap. We don't know that for include_bytes!, but I don't
think we actually need to track the contents anyways, so I'm passing "".
new_filemap does check for the zero length content, and it should be
reasonable, howeven I'm not sure if it would be better to pass None
instead of Some(Rc::new("")) as the src component of a FileMap.
Fixes bug #24348
There are syntax extensions that call `std::rt::begin_unwind` passing it a `usize`. I updated the syntax extension to instead pass `u32`, but for bootstrapping reasons, I needed to create a `#[cfg(stage0)]` version of `std::rt::begin_unwind` and therefore also `panic!`.
`format_args!` uses `#[allow_internal_unstable]` to access internal
functions and structs that are marked unstable. For this to work, the
spans on AST nodes referencing unstable internals must be equal (same
lo/hi values) to the `format_args!` call site, so that the stability
checker can recognize that the AST node was generated by the macro.
* In `noop_fold_expr`, call `new_span` in these cases:
- `ExprMethodCall`'s identifier
- `ExprField`'s identifier
- `ExprTupField`'s integer
Calling `new_span` for `ExprMethodCall`'s identifier is necessary to print
an acceptable diagnostic for `write!(&2, "")`. We see this error:
```
<std macros>:2:20: 2:66 error: type `&mut _` does not implement any method in scope named `write_fmt`
<std macros>:2 ( & mut * $ dst ) . write_fmt ( format_args ! ( $ ( $ arg ) * ) ) )
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
```
With this change, we also see a macro expansion backtrace leading to
the `write!(&2, "")` call site.
* After fully expanding a macro, we replace the expansion expression's
span with the original span. Call `fld.new_span` to add a backtrace to
this span. (Note that I'm call `new_span` after `bt.pop()`, so the macro
just expanded isn't on the backtrace.)
The motivating example for this change is `println!("{}")`. The format
string literal is `concat!($fmt, "arg")` and is inside the libstd macro.
We need to see the backtrace to find the `println!` call site.
* Add a backtrace to the `format_args!` format expression span.
r? alexcrichton
Addresses #23459