They were only correct in the simplest case. Some of the optimisations
are certainly possible but should be introduced carefully and only
when the whole pattern codegen infrastructure is in a better shape.
Fixes#16648.
Enables any macros using `MacExpr` to be treated as patterns when
they produce a literal in the form `ExprLit` (e.g. `stringify!` or `line!`).
Fixes#16876.
They were only correct in the simplest case. Some of the optimisations
are certainly possible but should be introduced carefully and only
when the whole pattern codegen infrastructure is in a better shape.
Fixes#16648.
Different Identifiers and Names can have identical textual representations, but different internal representations, due to the macro hygiene machinery (syntax contexts and gensyms). This provides a way to see these internals by compiling with `--pretty expanded,hygiene`.
This is useful for debugging & hacking on macros (e.g. diagnosing https://github.com/rust-lang/rust/issues/15750/https://github.com/rust-lang/rust/issues/15962 likely would've been faster with this functionality).
E.g.
```rust
#![feature(macro_rules)]
// minimal junk
#![no_std]
macro_rules! foo {
($x: ident) => { y + $x }
}
fn bar() {
foo!(x)
}
```
```rust
#![feature(macro_rules)]
// minimal junk
#![no_std]
fn bar /* 61#0 */() { y /* 60#2 */ + x /* 58#3 */ }
```
`--pretty expanded,hygiene` is helpful with debugging macro issues,
since two identifiers/names can be textually the same, but different
internally (resulting in weird "undefined variable" errors).
This unifies the `non_snake_case_functions` and `uppercase_variables` lints
into one lint, `non_snake_case`. It also now checks for non-snake-case modules.
This also extends the non-camel-case types lint to check type parameters, and
merges the `non_uppercase_pattern_statics` lint into the
`non_uppercase_statics` lint.
Because the `uppercase_variables` lint is now part of the `non_snake_case`
lint, all non-snake-case variables that start with lowercase characters (such
as `fooBar`) will now trigger the `non_snake_case` lint.
New code should be updated to use the new `non_snake_case` lint instead of the
previous `non_snake_case_functions` and `uppercase_variables` lints. All use of
the `non_uppercase_pattern_statics` should be replaced with the
`non_uppercase_statics` lint. Any code that previously contained non-snake-case
module or variable names should be updated to use snake case names or disable
the `non_snake_case` lint. Any code with non-camel-case type parameters should
be changed to use camel case or disable the `non_camel_case_types` lint.
[breaking-change]
For review. Not sure about the link_attrs stuff. Will work on converting all the tests.
extern crate "foobar" as foo;
extern crate foobar as foo;
Implements remaining part of RFC #47.
Addresses issue #16461.
Removed link_attrs from rust.md, they don't appear to be supported by
the parser.
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
Implements remaining part of RFC #47.
Addresses issue #16461.
Removed link_attrs from rust.md, they don't appear to be supported by
the parser.
Changed all the tests to use the new extern crate syntax
Change pretty printer to use 'as' syntax
As of RFC 18, struct layout is undefined. Opting into a C-compatible struct
layout is now down with #[repr(C)]. For consistency, specifying a packed
layout is now also down with #[repr(packed)]. Both can be specified.
To fix errors caused by this, just add #[repr(C)] to the structs, and change
#[packed] to #[repr(packed)]
Closes#14309
[breaking-change]
Stop read+write expressions from expanding into two occurences
in the AST. Add a bool to indicate whether an operand in output
position if read+write or not.
Fixes#14936
declared with the same name in the same scope.
This breaks several common patterns. First are unused imports:
use foo::bar;
use baz::bar;
Change this code to the following:
use baz::bar;
Second, this patch breaks globs that import names that are shadowed by
subsequent imports. For example:
use foo::*; // including `bar`
use baz::bar;
Change this code to remove the glob:
use foo::{boo, quux};
use baz::bar;
Or qualify all uses of `bar`:
use foo::{boo, quux};
use baz;
... baz::bar ...
Finally, this patch breaks code that, at top level, explicitly imports
`std` and doesn't disable the prelude.
extern crate std;
Because the prelude imports `std` implicitly, there is no need to
explicitly import it; just remove such directives.
The old behavior can be opted into via the `import_shadowing` feature
gate. Use of this feature gate is discouraged.
This implements RFC #116.
Closes#16464.
[breaking-change]
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
r? @nikomatsakis (or whoever)
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
r? @pnkfelix
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
by-reference upvars.
This partially implements RFC 38. A snapshot will be needed to turn this
on, because stage0 cannot yet parse the keyword.
Part of #12831.
r? @alexcrichton
by-reference upvars.
This partially implements RFC 38. A snapshot will be needed to turn this
on, because stage0 cannot yet parse the keyword.
Part of #12381.
This adds support to `quote_expr!` and friends for round-trip hygienic
preservation of Ident.
Here are the pieces of the puzzle:
* adding a method for encoding Ident for re-reading into token tree.
* Support for reading such encoded Idents in the lexer. Note that one
must peek ahead for MOD_SEP after scan_embedded_hygienic_ident.
* To ensure that encoded Idents are only read when we are in the midst
of expanding a `quote_expr` or similar, added a
`read_embedded_ident` flag on `StringReader`.
* pprust support for encoding Ident's as (uint,uint) pairs (for hygiene).
For historical reasons, "Win32" has been used in Rust codebase to mean "Windows OS in general".
This is confusing, especially now, that Rust supports Win64 builds.
[breaking-change]
This is useful e.g. for tools need a node-id, such as the flowgraph
pretty printer, since it can avoids the need to first pretty-print the
whole expanded,identified input in order to find out what the node-id
actually is.
It currently only supports path suffixes thst are made up of module
names (e.g. you cannot use the type instantiation form `a::<int>::b`
or `option::Option::unwrap_or` as a path suffix for this tool, though
the tool will produce paths that have non-modulues in the portion of
the path that is not included in the suffix).
(addressed review feedback too)
This leaves the `Share` trait at `std::kinds` via a `#[deprecated]` `pub use`
statement, but the `NoShare` struct is no longer part of `std::kinds::marker`
due to #12660 (the build cannot bootstrap otherwise).
All code referencing the `Share` trait should now reference the `Sync` trait,
and all code referencing the `NoShare` type should now reference the `NoSync`
type. The functionality and meaning of this trait have not changed, only the
naming.
Closes#16281
[breaking-change]
This leaves the `Share` trait at `std::kinds` via a `#[deprecated]` `pub use`
statement, but the `NoShare` struct is no longer part of `std::kinds::marker`
due to #12660 (the build cannot bootstrap otherwise).
All code referencing the `Share` trait should now reference the `Sync` trait,
and all code referencing the `NoShare` type should now reference the `NoSync`
type. The functionality and meaning of this trait have not changed, only the
naming.
Closes#16281
[breaking-change]
meaning `'b outlives 'a`. Syntax currently does nothing but is needed for full
fix to #5763. To use this syntax, the issue_5763_bootstrap feature guard is
required.
This ended up passing through the lexer but dying later on in parsing when it
wasn't handled. The strategy taken was to copy the `str_lit` funciton, but adapt
it for bytes.
Closes#16278
The `type_overflow` lint, doesn't catch the overflow for `i64` because
the overflow happens earlier in the parse phase when the `u64` as biggest
possible int gets casted to `i64` , without checking the for overflows.
We can't lint in the parse phase, so a refactoring of the `LitInt` type
was necessary.
The types `LitInt`, `LitUint` and `LitIntUnsuffixed` where merged to one
type `LitInt` which stores it's value as `u64`. An additional parameter was
added which indicate the signedness of the type and the sign of the value.
Note: This PR is motivated by an attempt to write an custom syntax extension that tried to use `syntax::fold`, and that could only do so by fixing bugs in it and copying out private functions.
---
Refactored `syntax::fold`
Prior to this, the code there had a few issues:
- Default implementations inconsistenly either had the prefix `noop_` or
not.
- Some default methods where implemented in terms of a public noop function
for user code to call, others where implemented directly on the trait
and did not allow users of the trait to reuse the code.
- Some of the default implementations where private, and thus not reusable
for other implementors.
- There where some bugs where default implemntations called other default
implementations directly, rather than to the underlying Folder, with the
result of some ast nodes never being visted even if the user implemented that
method. (For example, the current Folder never folded struct fields)
This commit solves this situation somewhat radically by making __all__
`fold_...` functions in the module into Folder methods, and implementing
them all in terms of public `noop_...` functions for other implementors to
call out to.
Some public functions had to be renamed to fit the new system, so this is a
breaking change.
---
Also added a few trait implementations to `ast` types
Not included are two required patches:
* LLVM: segmented stack support for DragonFly [1]
* jemalloc: simple configure patches
[1]: http://reviews.llvm.org/D4705
This adds support for `quote_arm!(cx, $pat => $expr)`, and `macro_rules!(($a:arm) => (...))`. It also fixes a bug in pretty printing, where this would generate invalid code:
```
match { 5i } {
1 => 2,
_ => 3,
}
```
It would generate this code:
```
match { 5i } {
1 => 2
_ => 3
}
```
Finally, it adds a couple helper methods to `ExtCtxt`.
Not included are two required patches:
* LLVM: segmented stack support for DragonFly [1]
* jemalloc: simple configure patches
[1]: http://reviews.llvm.org/D4705
Prior to this, the code there had a few issues:
- Default implementations inconsistently either had the prefix `noop_` or
not.
- Some default methods where implemented in terms of a public noop function
for user code to call, others where implemented directly on the trait
and did not allow users of the trait to reuse the code.
- Some of the default implementations where private, and thus not reusable
for other implementors.
- There where some bugs where default implementations called other default
implementations directly, rather than to the underlying Folder, with the
result of some AST nodes never being visited even if the user implemented that
method. (For example, the current Folder never folded struct fields)
This commit solves this situation somewhat radically by making _all_
`fold_...` functions in the module into Folder methods, and implementing
them all in terms of public `noop_...` functions for other implementors to
call out to.
Some public functions had to be renamed to fit the new system, so this is a
breaking change.
[breaking-change]
the CFG for match statements.
There were two bugs in issue #14684. One was simply that the borrow
check didn't know about the correct CFG for match statements: the
pattern must be a predecessor of the guard. This disallows the bad
behavior if there are bindings in the pattern. But it isn't enough to
prevent the memory safety problem, because of wildcards; thus, this
patch introduces a more restrictive rule, which disallows assignments
and mutable borrows inside guards outright.
I discussed this with Niko and we decided this was the best plan of
action.
This breaks code that performs mutable borrows in pattern guards. Most
commonly, the code looks like this:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz if self.f(...) => { ... }
_ => { ... }
}
}
}
Change this code to not use a guard. For example:
impl Foo {
fn f(&mut self, ...) {}
fn g(&mut self, ...) {
match bar {
Baz => {
if self.f(...) {
...
} else {
...
}
}
_ => { ... }
}
}
}
Sometimes this can result in code duplication, but often it illustrates
a hidden memory safety problem.
Closes#14684.
[breaking-change]
This makes edge cases in which the `Iterator` trait was not in scope
and/or `Option` or its variants were not in scope work properly.
This breaks code that looks like:
struct MyStruct { ... }
impl MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
for x in MyStruct { ... } { ... }
Change ad-hoc `next` methods like the above to implementations of the
`Iterator` trait. For example:
impl Iterator<int> for MyStruct {
fn next(&mut self) -> Option<int> { ... }
}
Closes#15392.
[breaking-change]
This is done entirely in the libraries for functions up to 16 arguments.
A macro is used so that more arguments can be easily added if we need.
Note that I had to adjust the overloaded call algorithm to not try
calling the overloaded call operator if the callee is a built-in
function type, to prevent loops.
Closes#15448.
This eliminates the last vestige of the `~` syntax.
Instead of `~self`, write `self: Box<TypeOfSelf>`; instead of `mut
~self`, write `mut self: Box<TypeOfSelf>`, replacing `TypeOfSelf` with
the self-type parameter as specified in the implementation.
Closes#13885.
[breaking-change]
Emit a single rt::Piece per consecutive string literals. String literals
are split on {{ or }} escapes.
Saves a small amount of static storage and emitted code size.
In f1ad425199, I changed the handling
of macros, to prevent macro invocations from occurring in fully expanded
source. Instead, I added a side table. It contained only the
spans of the macros, because this was the only information required
in order to make macro export work.
However, librustdoc was also affected by this change, since it
extracts macro information in a similar way. As a result of the earlier
change, exported macros were no longer documented.
In order to repair this, I've adjusted the side table to contain whole
items, rather than just the spans.