This commit builds on #65501 continue to simplify the build system and
compiler now that we no longer have multiple LLVM backends to ship by
default. Here this switches the compiler back to what it once was long
long ago, which is linking LLVM directly to the compiler rather than
dynamically loading it at runtime. The `codegen-backends` directory of
the sysroot no longer exists and all relevant support in the build
system is removed. Note that `rustc` still supports a dynamically loaded
codegen backend as it did previously, it just no longer supports
dynamically loaded codegen backends in its own sysroot.
Additionally as part of this the `librustc_codegen_llvm` crate now once
again explicitly depends on all of its crates instead of implicitly
loading them through the sysroot. This involved filling out its
`Cargo.toml` and deleting all the now-unnecessary `extern crate`
annotations in the header of the crate. (this in turn required adding a
number of imports for names of macros too).
The end results of this change are:
* Rustbuild's build process for the compiler as all the "oh don't forget
the codegen backend" checks can be easily removed.
* Building `rustc_codegen_llvm` is much simpler since it's simply
another compiler crate.
* Managing the dependencies of `rustc_codegen_llvm` is much simpler since
it's "just another `Cargo.toml` to edit"
* The build process should be a smidge faster because there's more
parallelism in the main rustc build step rather than splitting
`librustc_codegen_llvm` out to its own step.
* The compiler is expected to be slightly faster by default because the
codegen backend does not need to be dynamically loaded.
* Disabling LLVM as part of rustbuild is still supported, supporting
multiple codegen backends is still supported, and dynamic loading of a
codegen backend is still supported.
In #56986 the linkage of jemalloc to the compiler was switched from the
driver library to the rustc binary to ensure that only rustc itself uses
jemalloc. In doing so, however, it turns out jemalloc wasn't actually
linked in at all! None of the symbols were referenced so the static
library wasn't used. This means that jemalloc wasn't pulled in at all.
This commit performs a bit of a dance to reference jemalloc symbols,
attempting to pull it in despite LLVM's optimizations.
Closes#57115
This commit moves jemalloc to just the rustc binary rather than the
rustc_driver shared library, enusring that it's only used for binaries
that opt-in to it like rustc rather than other binaries using
librustc_driver like rustdoc/rls/etc. This will hopefully address #56980
Ever since we added a Cargo-based build system for the compiler the
standard library has always been a little special, it's never been able
to depend on crates.io crates for runtime dependencies. This has been a
result of various limitations, namely that Cargo doesn't understand that
crates from crates.io depend on libcore, so Cargo tries to build crates
before libcore is finished.
I had an idea this afternoon, however, which lifts the strategy
from #52919 to directly depend on crates.io crates from the standard
library. After all is said and done this removes a whopping three
submodules that we need to manage!
The basic idea here is that for any crate `std` depends on it adds an
*optional* dependency on an empty crate on crates.io, in this case named
`rustc-std-workspace-core`. This crate is overridden via `[patch]` in
this repository to point to a local crate we write, and *that* has a
`path` dependency on libcore.
Note that all `no_std` crates also depend on `compiler_builtins`, but if
we're not using submodules we can publish `compiler_builtins` to
crates.io and all crates can depend on it anyway! The basic strategy
then looks like:
* The standard library (or some transitive dep) decides to depend on a
crate `foo`.
* The standard library adds
```toml
[dependencies]
foo = { version = "0.1", features = ['rustc-dep-of-std'] }
```
* The crate `foo` has an optional dependency on `rustc-std-workspace-core`
* The crate `foo` has an optional dependency on `compiler_builtins`
* The crate `foo` has a feature `rustc-dep-of-std` which activates these
crates and any other necessary infrastructure in the crate.
A sample commit for `dlmalloc` [turns out to be quite simple][commit].
After that all `no_std` crates should largely build "as is" and still be
publishable on crates.io! Notably they should be able to continue to use
stable Rust if necessary, since the `rename-dependency` feature of Cargo
is soon stabilizing.
As a proof of concept, this commit removes the `dlmalloc`,
`libcompiler_builtins`, and `libc` submodules from this repository. Long
thorns in our side these are now gone for good and we can directly
depend on crates.io! It's hoped that in the long term we can bring in
other crates as necessary, but for now this is largely intended to
simply make it easier to manage these crates and remove submodules.
This should be a transparent non-breaking change for all users, but one
possible stickler is that this almost for sure breaks out-of-tree
`std`-building tools like `xargo` and `cargo-xbuild`. I think it should
be relatively easy to get them working, however, as all that's needed is
an entry in the `[patch]` section used to build the standard library.
Hopefully we can work with these tools to solve this problem!
[commit]: 28ee12db81
This commit adds opt-in support to the compiler to link to `jemalloc` in
the compiler. When activated the compiler will depend on `jemalloc-sys`,
instruct jemalloc to unprefix its symbols, and then link to it. The
feature is activated by default on Linux/OSX compilers for x86_64/i686
platforms, and it's not enabled anywhere else for now. We may be able to
opt-in other platforms in the future! Also note that the opt-in only
happens on CI, it's otherwise unconditionally turned off by default.
Closes#36963
This commit removes all jemalloc related submodules, configuration, etc,
from the bootstrap, from the standard library, and from the compiler.
This will be followed up with a change to use jemalloc specifically as
part of rustc on blessed platforms.
In #49289, rustc was changed to emit metadata for binaries, which made
it so that the librustc.rmeta file created when compiling librustc was
overwritten by the rustc-main compilation. This commit renames the
rustc-main binary to avoid this problem.
https://github.com/rust-lang/cargo/issues/5524 has also been filed to
see if Cargo can learn to warn on this situation instead of leaving it
for the user to debug.
Prevent broken pipes causing ICEs
As the private `std::io::print_to` panics if there is an I/O error, which is used by `println!`, the compiler would ICE if one attempted to use a broken pipe (e.g. `rustc --help | false`). This introduces a new (private) macro `try_println!` which allows us to avoid this.
As a side note, it seems this macro might be useful publicly (and actually there seems to be [a crate specifically for this purpose](https://crates.io/crates/try_print/)), though that can probably be left for a future discussion.
One slight alternative approach would be to simply early exit without an error (i.e. exit code `0`), which [this comment](https://github.com/rust-lang/rust/issues/34376#issuecomment-377822526) suggests is the usual approach. I've opted not to take that approach initially, because I think it's more helpful to know when there is a broken pipe.
Fixes#34376.
add a dist builder to build rust-std components for the THUMB targets
the rust-std component only contains the core and compiler-builtins (+c +mem) crates
cc #49382
- I'm not entirely sure if this PR alone will produce rust-std components installable by rustup or if something else needs to be changed
- I could have done the THUMB builds in an existing builder / image; I wasn't sure if that was a good idea so I added a new image
- I could build other crates like alloc into the rust-std component but, AFAICT, that would require calling Cargo a second time (one for alloc and one for compiler-builtins), or have alloc depend on compiler-builtins (#49503 will perform that change) *and* have alloc resurface the "c" and "mem" Cargo features.
r? @alexcrichton
Building on the work of # 45684 this commit updates the compiler to
unconditionally load the `rustc_trans` crate at runtime instead of linking to it
at compile time. The end goal of this work is to implement # 46819 where rustc
will have multiple backends available to it to load.
This commit starts off by removing the `extern crate rustc_trans` from the
driver. This involved moving some miscellaneous functionality into the
`TransCrate` trait and also required an implementation of how to locate and load
the trans backend. This ended up being a little tricky because the sysroot isn't
always the right location (for example `--sysroot` arguments) so some extra code
was added as well to probe a directory relative to the current dll (the
rustc_driver dll).
Rustbuild has been updated accordingly as well to have a separate compilation
invocation for the `rustc_trans` crate and assembly it accordingly into the
sysroot. Finally, the distribution logic for the `rustc` package was also
updated to slurp up the trans backends folder.
A number of assorted fallout changes were included here as well to ensure tests
pass and such, and they should all be commented inline.
This commit adds a new target to the compiler: wasm32-unknown-unknown. This
target is a reimagining of what it looks like to generate WebAssembly code from
Rust. Instead of using Emscripten which can bring with it a weighty runtime this
instead is a target which uses only the LLVM backend for WebAssembly and a
"custom linker" for now which will hopefully one day be direct calls to lld.
Notable features of this target include:
* There is zero runtime footprint. The target assumes nothing exists other than
the wasm32 instruction set.
* There is zero toolchain footprint beyond adding the target. No custom linker
is needed, rustc contains everything.
* Very small wasm modules can be generated directly from Rust code using this
target.
* Most of the standard library is stubbed out to return an error, but anything
related to allocation works (aka `HashMap`, `Vec`, etc).
* Naturally, any `#[no_std]` crate should be 100% compatible with this new
target.
This target is currently somewhat janky due to how linking works. The "linking"
is currently unconditional whole program LTO (aka LLVM is being used as a
linker). Naturally that means compiling programs is pretty slow! Eventually
though this target should have a linker.
This target is also intended to be quite experimental. I'm hoping that this can
act as a catalyst for further experimentation in Rust with WebAssembly. Breaking
changes are very likely to land to this target, so it's not recommended to rely
on it in any critical capacity yet. We'll let you know when it's "production
ready".
---
Currently testing-wise this target is looking pretty good but isn't complete.
I've got almost the entire `run-pass` test suite working with this target (lots
of tests ignored, but many passing as well). The `core` test suite is still
getting LLVM bugs fixed to get that working and will take some time. Relatively
simple programs all seem to work though!
---
It's worth nothing that you may not immediately see the "smallest possible wasm
module" for the input you feed to rustc. For various reasons it's very difficult
to get rid of the final "bloat" in vanilla rustc (again, a real linker should
fix all this). For now what you'll have to do is:
cargo install --git https://github.com/alexcrichton/wasm-gc
wasm-gc foo.wasm bar.wasm
And then `bar.wasm` should be the smallest we can get it!
---
In any case for now I'd love feedback on this, particularly on the various
integration points if you've got better ideas of how to approach them!
This commit migrates the in-tree `libcompiler_builtins` to the upstream version
at https://github.com/rust-lang-nursery/compiler-builtins. The upstream version
has a number of intrinsics written in Rust and serves as an in-progress rewrite
of compiler-rt into Rust. Additionally it also contains all the existing
intrinsics defined in `libcompiler_builtins` for 128-bit integers.
It's been the intention since the beginning to make this transition but
previously it just lacked the manpower to get done. As this PR likely shows it
wasn't a trivial integration! Some highlight changes are:
* The PR rust-lang-nursery/compiler-builtins#166 contains a number of fixes
across platforms and also some refactorings to make the intrinsics easier to
read. The additional testing added there also fixed a number of integration
issues when pulling the repository into this tree.
* LTO with the compiler-builtins crate was fixed to link in the entire crate
after the LTO process as these intrinsics are excluded from LTO.
* Treatment of hidden symbols was updated as previously the
`#![compiler_builtins]` crate would mark all symbol *imports* as hidden
whereas it was only intended to mark *exports* as hidden.
As we continue to add more crates to the compiler and use them to implement
various features we want to be sure we're not accidentally expanding the API
surface area of the compiler! To that end this commit adds a new `run-make` test
which will attempt to `extern crate foo` all crates in the sysroot, verifying
that they're all unstable.
This commit discovered that the `std_shim` and `test_shim` crates were
accidentally stable and fixes the situation by deleting those shims. The shims
are no longer necessary due to changes in Cargo that have happened since they
were originally incepted.
Add rustbuild command `bench`
Add command bench to rustbuild, so that `./x.py bench <path>` can compile and run benchmarks.
`./x.py bench --stage 1 src/libcollections` and `./x.py bench --stage 1 src/libstd` should both compile well. Just `./x.py bench` runs all benchmarks for the libstd crates.
Fixes#37897
with this feature disabled, you can (Cargo) compile std with
"panic=abort"
rustbuild will build std with this feature enabled, to maintain the
status quo
fixes#37252
This involves hacking the code used to run cargo test on various
packages, because it reads Cargo.lock to determine which packages should
be tested. This change implements a blacklist, since that will catch new
crates when they are added in the future.
This commit blanket renames the `rustc_macro` infrastructure to `proc_macro`,
which reflects the general consensus of #35900. A follow up PR to Cargo will be
required to purge the `rustc-macro` name as well.