- add feature gate
- add basic tests
- adjust parser to eliminate conflict between `const fn` and associated
constants
- allow `const fn` in traits/trait-impls, but forbid later in type check
- correct some merge conflicts
Closes#17841.
The majority of the work should be done, e.g. trait and inherent impls, different forms of UFCS syntax, defaults, and cross-crate usage. It's probably enough to replace the constants in `f32`, `i8`, and so on, or close to good enough.
There is still some significant functionality missing from this commit:
- ~~Associated consts can't be used in match patterns at all. This is simply because I haven't updated the relevant bits in the parser or `resolve`, but it's *probably* not hard to get working.~~
- Since you can't select an impl for trait-associated consts until partway through type-checking, there are some problems with code that assumes that you can check constants earlier. Associated consts that are not in inherent impls cause ICEs if you try to use them in array sizes or match ranges. For similar reasons, `check_static_recursion` doesn't check them properly, so the stack goes ka-blooey if you use an associated constant that's recursively defined. That's a bit trickier to solve; I'm not entirely sure what the best approach is yet.
- Dealing with consts associated with type parameters will raise some new issues (e.g. if you have a `T: Int` type parameter and want to use `<T>::ZERO`). See rust-lang/rfcs#865.
- ~~Unused associated consts don't seem to trigger the `dead_code` lint when they should. Probably easy to fix.~~
Also, this is the first time I've been spelunking in rustc to such a large extent, so I've probably done some silly things in a couple of places.
This changes the `ToTokens` implementations for expressions, statements,
etc. with almost-trivial ones that produce `Interpolated(*Nt(...))`
pseudo-tokens. In this way, quasiquote now works the same way as macros
do: already-parsed AST fragments are used as-is, not reparsed.
The `ToSource` trait is removed. Quasiquote no longer involves
pretty-printing at all, which removes the need for the
`encode_with_hygiene` hack. All associated machinery is removed.
A new `Nonterminal` is added, NtArm, which the parser now interpolates.
This is just for quasiquote, not macros (although it could be in the
future).
`ToTokens` is no longer implemented for `Arg` (although this could be
added again) and `Generics` (which I don't think makes sense).
This breaks any compiler extensions that relied on the ability of
`ToTokens` to turn AST fragments back into inspectable token trees. For
this reason, this closes#16987.
As such, this is a [breaking-change].
Fixes#16472.
Fixes#15962.
Fixes#17397.
Fixes#16617.
Changes the style guidelines regarding unit tests to recommend using a
sub-module named "tests" instead of "test" for unit tests as "test"
might clash with imports of libtest.
* In noop_fold_expr, call new_span in these cases:
- ExprMethodCall's identifier
- ExprField's identifier
- ExprTupField's integer
Calling new_span for ExprMethodCall's identifier is necessary to print
an acceptable diagnostic for write!(&2, ""). We see this error:
<std macros>:2:20: 2:66 error: type `&mut _` does not implement any method in scope named `write_fmt`
<std macros>:2 ( & mut * $ dst ) . write_fmt ( format_args ! ( $ ( $ arg ) * ) ) )
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
With this change, we also see a macro expansion backtrace leading to
the write!(&2, "") call site.
* After fully expanding a macro, we replace the expansion expression's
span with the original span. Call fld.new_span to add a backtrace to
this span. (Note that I'm call new_span after bt.pop(), so the macro
just expanded isn't on the backtrace.)
The motivating example for this change is println!("{}"). The format
string literal is concat!($fmt, "arg") and is inside the libstd macro.
We need to see the backtrace to find the println! call site.
* Add a backtrace to the format_args! format expression span.
Addresses #23459
Refactored code so that the drop-flag values for initialized
(`DTOR_NEEDED`) versus dropped (`DTOR_DONE`) are given explicit names.
Add `mem::dropped()` (which with `DTOR_DONE == 0` is semantically the
same as `mem::zeroed`, but the point is that it abstracts away from
the particular choice of value for `DTOR_DONE`).
Filling-drop needs to use something other than `ptr::read_and_zero`,
so I added such a function: `ptr::read_and_drop`. But, libraries
should not use it if they can otherwise avoid it.
Fixes to tests to accommodate filling-drop.
This commit deprecates the majority of std::old_io::fs in favor of std::fs and
its new functionality. Some functions remain non-deprecated but are now behind a
feature gate called `old_fs`. These functions will be deprecated once
suitable replacements have been implemented.
The compiler has been migrated to new `std::fs` and `std::path` APIs where
appropriate as part of this change.
upgrade the inference based on expected type so that it is able to
infer the fn kind in isolation even if the full signature is not
available (and we could perhaps do better still in some cases, such as
extracting just the types of the arguments but not the return value).
the compiler that assumed two input types to assume two ouputs; we also have to teach `project.rs`
to project `Output` from the unboxed closure and fn traits.
Instead of copy-pasting the whole macro_rules! item from the original .rs file,
we serialize a separate name, attributes list, and body, the latter as
pretty-printed TTs. The compilation of macro_rules! macros is decoupled
somewhat from the expansion of macros in item position.
This filters out comments, and facilitates selective imports.
This implements RFC 179 by making the pattern `&<pat>` require matching
against a variable of type `&T`, and introducing the pattern `&mut
<pat>` which only works with variables of type `&mut T`.
The pattern `&mut x` currently parses as `&(mut x)` i.e. a pattern match
through a `&T` or a `&mut T` that binds the variable `x` to have type
`T` and to be mutable. This should be rewritten as follows, for example,
for &mut x in slice.iter() {
becomes
for &x in slice.iter() {
let mut x = x;
Due to this, this is a
[breaking-change]
Closes#20496.