This PR both adds in-source documentation on what to look out for
when adding a new (X86) feature set and adds all that are detectable at run-time in Rust stable
as of 1.27.0.
This should only enable the use of the corresponding LLVM intrinsics.
Actual intrinsics need to be added separately in rust-lang/stdarch.
It also re-orders the run-time-detect test statements to be more consistent
with the actual list of intrinsics whitelisted and removes underscores not present
in the actual names (which might be mistaken as being part of the name)
BTreeMap: stop mistaking node::MIN_LEN for a node level constraint
Correcting #77612 that fell into the trap of assuming that node::MIN_LEN is an imposed minimum everywhere, and trying to make it much more clear it is an offered minimum at the node level.
r? @Mark-Simulacrum
Bump backtrace-rs to enable Mach-O support on iOS.
Related to rust-lang/backtrace-rs#378. Fixes backtraces on iOS that were missing in Rust v1.47.0 after switching to gimli because it only enabled Mach-O support on macOS.
replace `#[allow_internal_unstable]` with `#[rustc_allow_const_fn_unstable]` for `const fn`s
`#[allow_internal_unstable]` is currently used to side-step feature gate and stability checks.
While it was originally only meant to be used only on macros, its use was expanded to `const fn`s.
This pr adds stricter checks for the usage of `#[allow_internal_unstable]` (only on macros) and introduces the `#[rustc_allow_const_fn_unstable]` attribute for usage on `const fn`s.
This pr does not change any of the functionality associated with the use of `#[allow_internal_unstable]` on macros or the usage of `#[rustc_allow_const_fn_unstable]` (instead of `#[allow_internal_unstable]`) on `const fn`s (see https://github.com/rust-lang/rust/issues/69399#issuecomment-712911540).
Note: The check for `#[rustc_allow_const_fn_unstable]` currently only validates that the attribute is used on a function, because I don't know how I would check if the function is a `const fn` at the place of the check. I therefore openend this as a 'draft pull request'.
Closesrust-lang/rust#69399
r? @oli-obk
Throw core::panic!("message") as &str instead of String.
This makes `core::panic!("message")` consistent with `std::panic!("message")`, which throws a `&str` and not a `String`.
This also makes any other panics from `core::panicking::panic` result in a `&str` rather than a `String`, which includes compiler-generated panics such as the panics generated for `mem::zeroed()`.
---
Demonstration:
```rust
use std::panic;
use std::any::Any;
fn main() {
panic::set_hook(Box::new(|panic_info| check(panic_info.payload())));
check(&*panic::catch_unwind(|| core::panic!("core")).unwrap_err());
check(&*panic::catch_unwind(|| std::panic!("std")).unwrap_err());
}
fn check(msg: &(dyn Any + Send)) {
if let Some(s) = msg.downcast_ref::<String>() {
println!("Got a String: {:?}", s);
} else if let Some(s) = msg.downcast_ref::<&str>() {
println!("Got a &str: {:?}", s);
}
}
```
Before:
```
Got a String: "core"
Got a String: "core"
Got a &str: "std"
Got a &str: "std"
```
After:
```
Got a &str: "core"
Got a &str: "core"
Got a &str: "std"
Got a &str: "std"
```
Fix const core::panic!(non_literal_str).
Invocations of `core::panic!(x)` where `x` is not a string literal expand to `panic!("{}", x)`, which is not understood by the const panic logic right now. This adds `panic_str` as a lang item, and modifies the const eval implementation to hook into this item as well.
This fixes the issue mentioned here: https://github.com/rust-lang/rust/issues/51999#issuecomment-687604248
r? `@RalfJung`
`@rustbot` modify labels: +A-const-eval
revise Hermit's mutex interface to support the behaviour of StaticMutex
rust-lang/rust#77147 simplifies things by splitting this Mutex type into two types matching the two use cases: StaticMutex and MovableMutex. To support the new behavior of StaticMutex, we move part of the mutex implementation into libstd.
The interface to the OS changed. Consequently, I removed a few functions, which aren't longer needed.
change the order of type arguments on ControlFlow
This allows ControlFlow<BreakType> which is much more ergonomic for common iterator combinator use cases.
Addresses one component of #75744
Check for exhaustion in RangeInclusive::contains and slicing
When a range has finished iteration, `is_empty` returns true, so it
should also be the case that `contains` returns false.
Fixes#77941.
add `insert` to `Option`
This removes a cause of `unwrap` and code complexity.
This allows replacing
```
option_value = Some(build());
option_value.as_mut().unwrap()
```
with
```
option_value.insert(build())
```
It's also useful in contexts not requiring the mutability of the reference.
Here's a typical cache example:
```
let checked_cache = cache.as_ref().filter(|e| e.is_valid());
let content = match checked_cache {
Some(e) => &e.content,
None => {
cache = Some(compute_cache_entry());
// unwrap is OK because we just filled the option
&cache.as_ref().unwrap().content
}
};
```
It can be changed into
```
let checked_cache = cache.as_ref().filter(|e| e.is_valid());
let content = match checked_cache {
Some(e) => &e.content,
None => &cache.insert(compute_cache_entry()).content,
};
```
*(edited: I removed `insert_with`)*
This removes a cause of `unwrap` and code complexity.
This allows replacing
```
option_value = Some(build());
option_value.as_mut().unwrap()
```
with
```
option_value.insert(build())
```
or
```
option_value.insert_with(build)
```
It's also useful in contexts not requiring the mutability of the reference.
Here's a typical cache example:
```
let checked_cache = cache.as_ref().filter(|e| e.is_valid());
let content = match checked_cache {
Some(e) => &e.content,
None => {
cache = Some(compute_cache_entry());
// unwrap is OK because we just filled the option
&cache.as_ref().unwrap().content
}
};
```
It can be changed into
```
let checked_cache = cache.as_ref().filter(|e| e.is_valid());
let content = match checked_cache {
Some(e) => &e.content,
None => &cache.insert_with(compute_cache_entry).content,
};
```
Doc formating consistency between slice sort and sort_unstable, and big O notation consistency
Updated documentation for slice sorting methods to be consistent between stable and unstable versions, which just ended up being minor formatting differences.
I also went through and updated any doc comments with big O notation to be consistent with #74010 by italicizing them rather than having them in a code block.
Fixing escaping to ensure generation of welformed json.
doc tests' json name have a filename in them. When json test output is asked for on windows currently produces invalid json.
Tracking issue for json test output: #49359
Implement TryFrom between NonZero types.
This will instantly be stable, as trait implementations for stable types and traits can not be `#[unstable]`.
Closes#77258.
@rustbot modify labels: +T-libs
Improve wording of "cannot multiply" type error
For example, if you had this code:
fn foo(x: i32, y: f32) -> f32 {
x * y
}
You would get this error:
error[E0277]: cannot multiply `f32` to `i32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
However, that's not usually how people describe multiplication. People
usually describe multiplication like how the division error words it:
error[E0277]: cannot divide `i32` by `f32`
--> src/lib.rs:2:7
|
2 | x / y
| ^ no implementation for `i32 / f32`
|
= help: the trait `Div<f32>` is not implemented for `i32`
So that's what this change does. It changes this:
error[E0277]: cannot multiply `f32` to `i32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
To this:
error[E0277]: cannot multiply `i32` by `f32`
--> src/lib.rs:2:7
|
2 | x * y
| ^ no implementation for `i32 * f32`
|
= help: the trait `Mul<f32>` is not implemented for `i32`
Add Pin::static_ref, static_mut.
This adds `Pin::static_ref` and `Pin::static_mut`, which convert a static reference to a pinned static reference.
Static references are effectively already pinned, as what they refer to has to live forever and can never be moved.
---
Context: I want to update the `sys` and `sys_common` mutexes/rwlocks/condvars to use `Pin<&self>` in their functions, instead of only warning in the unsafety comments that they may not be moved. That should make them a little bit less dangerous to use. Putting such an object in a `static` (e.g. through `sys_common::StaticMutex`) fulfills the requirements about never moving it, but right now there's no safe way to get a `Pin<&T>` to a `static`. This solves that.
Wrapping intrinsics doc links update.
The links in the wrapping intrinsics docs now refer to the `wrapping_*` functions, not the `checked_*` functions.
const keyword: brief paragraph on 'const fn'
`const fn` were mentioned in the title, but called "deterministic functions" which is not their main property (though at least currently it is a consequence of being const-evaluable). This adds a brief paragraph discussing them, also in the hopes of clarifying that they do *not* have any effect on run-time uses.
Assert that pthread mutex initialization succeeded
If pthread mutex initialization fails, the failure will go unnoticed unless
debug assertions are enabled. Any subsequent use of mutex will also silently
fail, since return values from lock & unlock operations are similarly checked
only through debug assertions.
In some implementations the mutex initialization requires a memory
allocation and so it does fail in practice.
Assert that initialization succeeds to ensure that mutex guarantees
mutual exclusion.
Fixes#34966.