fix: Fix inlay hint resolution being broken
So, things broke because we now store a hash (u64) in the resolution payload, but javascript and hence JSON only support integers of up to 53 bits (anything beyond gets truncated in various ways) which caused almost all hashes to always differ when resolving them. This masks the hash to 53 bits to work around that.
Fixes https://github.com/rust-lang/rust-analyzer/issues/16962
fix: VFS should not confuse paths with source roots that have the same prefix
Previously, the VFS would assign paths to the source root that had the longest string prefix match. This would break when we had source roots in subdirectories:
```
/foo
/foo/bar
```
Given a file `/foo/bar_baz.rs`, we would attribute it to the `/foo/bar` source root, which is wrong.
As a result, we would attribute paths to the wrong crate when a crate was in a subdirectory of another one. This is more common in larger monorepos, but could occur in any Rust project.
Fix this in the VFS, and add a test.
Run Windows tests on PRs too
Previously PRs would only do a build on Windows, which confusingly meant that PRs got a green tick for Windows despite not testing them.
See discussion in #17019.
internal: make function builder create ast directly
I am working on #17050.
In the process, I noticed a place in the code that could be refactored.
Currently, the `function builder` creates the `ast` through the `function template` , but those two processes can be combined into one function.
I thought I should work on this first and created a PR.
Document enabling the flatpak rust SDK extension
Just having `org.freedesktop.Sdk.Extension.rust-stable` and `org.freedesktop.Sdk.Extension.llvm15` installed is not enough.
`/usr/lib/sdk/rust-stable/bin` at least needs to be added to the `PATH`.
In the case of VSCodium [ide-flatpak-wrapper](https://github.com/noonsleeper/ide-flatpak-wrapper) in included to do this.
Previously PRs would only do a build on Windows, which confusingly
meant that PRs got a green tick for Windows despite not testing them.
See discussion in #17019.
Fix off-by-one error converting to LSP UTF8 offsets with multi-byte char
On this file,
```rust
fn main() {
let 된장 = 1;
}
```
when using `"positionEncodings":["utf-16"]` I get an "unused variable" diagnostic on the variable
name (codepoint offset range `8..10`). So far so good.
When using `positionEncodings":["utf-8"]`, I expect to get the equivalent range in bytes (LSP:
"Character offsets count UTF-8 code units (e.g bytes)."), which is `8..14`, because both
characters are 3 bytes in UTF-8. However I actually get `10..14`.
Looks like this is because we accidentally treat a 1-based index as an offset value: when
converting from our internal char-indices to LSP byte offsets, we look at one character to many.
This causes wrong results if the extra character is a multi-byte one, such as when computing
the start coordinate of 된장.
Fix that by actually passing an offset. While at it, fix the variable name of the line number,
which is not an offset (yet).
Originally reported at https://github.com/kakoune-lsp/kakoune-lsp/issues/740
On this file,
```rust
fn main() {
let 된장 = 1;
}
```
when using `"positionEncodings":["utf-16"]` I get an "unused variable" diagnostic on the variable
name (codepoint offset range `8..10`). So far so good.
When using `positionEncodings":["utf-8"]`, I expect to get the equivalent range in bytes (LSP:
"Character offsets count UTF-8 code units (e.g bytes)."), which is `8..14`, because both
characters are 3 bytes in UTF-8. However I actually get `10..14`.
Looks like this is because we accidentally treat a 1-based index as an offset value: when
converting from our internal char-indices to LSP byte offsets, we look at one character to many.
This causes wrong results if the extra character is a multi-byte one, such as when computing
the start coordinate of 된장.
Fix that by actually passing an offset. While at it, fix the variable name of the line number,
which is not an offset (yet).
Originally reported at https://github.com/kakoune-lsp/kakoune-lsp/issues/740
internal: Consider ADT generic parameter defaults for unsubstituted layout calculations
For one, this brings back layout information for lifetime generic ADTs (which "regressed" when we started adding lifetimes to chalks-ir), but it also allows layout calculation to work for definitions that don't actually use the generics (where its only used in a `PhantomData` for example)
Changed the completion item source_range to match
the replaced text. Though in VS Code it may not be
disturbing because the snippet is previewed in a
box, but in Helix editor, it's previewed by applying
the main text edit.