All derive ops currently use match-destructuring to access fields. This
is reasonable for enums, but sub-optimal for structs. E.g.:
```
fn eq(&self, other: &Point) -> bool {
match *other {
Self { x: ref __self_1_0, y: ref __self_1_1 } =>
match *self {
Self { x: ref __self_0_0, y: ref __self_0_1 } =>
(*__self_0_0) == (*__self_1_0) &&
(*__self_0_1) == (*__self_1_1),
},
}
}
```
This commit changes derive ops on structs to use field access instead, e.g.:
```
fn eq(&self, other: &Point) -> bool {
self.x == other.x && self.y == other.y
}
```
This is faster to compile, results in smaller binaries, and is simpler to
generate. Unfortunately, we have to keep the old pattern generating code around
for `repr(packed)` structs because something like `&self.x` (which doesn't show
up in `PartialEq` ops, but does show up in `Debug` and `Hash` ops) isn't
allowed. But this commit at least changes those cases to use let-destructuring
instead of match-destructuring, e.g.:
```
fn hash<__H: ::core:#️⃣:Hasher>(&self, state: &mut __H) -> () {
{
let Self(ref __self_0_0) = *self;
{ ::core:#️⃣:Hash::hash(&(*__self_0_0), state) }
}
}
```
There are some unnecessary blocks remaining in the generated code, but I
will fix them in a follow-up PR.
Avoid some `&str` to `String` conversions with `MultiSpan::push_span_label`
This patch removes some`&str` to `String` conversions with `MultiSpan::push_span_label`.
The `rustc_lint_diagnostics` attribute is used by the diagnostic
translation/struct migration lints to identify calls where
non-translatable diagnostics or diagnostics outwith impls are being
created. Any function used in creating a diagnostic should be annotated
with this attribute so this commit adds the attribute to many more
functions.
Signed-off-by: David Wood <david.wood@huawei.com>
This greatly reduces round-trips to fetch relevant extra information about the
token in proc macro code, and avoids RPC messages to create Group tokens.
This greatly reduces round-trips to fetch relevant extra information about the
token in proc macro code, and avoids RPC messages to create Punct tokens.
proc_macro/bridge: cache static spans in proc_macro's client thread-local state
This is the second part of https://github.com/rust-lang/rust/pull/86822, split off as requested in https://github.com/rust-lang/rust/pull/86822#pullrequestreview-1008655452. This patch removes the RPC calls required for the very common operations of `Span::call_site()`, `Span::def_site()` and `Span::mixed_site()`.
Some notes:
This part is one of the ones I don't love as a final solution from a design standpoint, because I don't like how the spans are serialized immediately at macro invocation. I think a more elegant solution might've been to reserve special IDs for `call_site`, `def_site`, and `mixed_site` at compile time (either starting at 1 or from `u32::MAX`) and making reading a Span handle automatically map these IDs to the relevant values, rather than doing extra serialization.
This would also have an advantage for potential future work to allow `proc_macro` to operate more independently from the compiler (e.g. to reduce the necessity of `proc-macro2`), as methods like `Span::call_site()` could be made to function without access to the compiler backend.
That was unfortunately tricky to do at the time, as this was the first part I wrote of the patches. After the later part (#98188, #98189), the other uses of `InternedStore` are removed meaning that a custom serialization strategy for `Span` is easier to implement.
If we want to go that path, we'll still need the majority of the work to split the bridge object and introduce the `Context` trait for free methods, and it will be easier to do after `Span` is the only user of `InternedStore` (after #98189).
This commit adds new methods that combine sequences of existing
formatting methods.
- `Formatter::debug_{tuple,struct}_field[12345]_finish`, equivalent to a
`Formatter::debug_{tuple,struct}` + N x `Debug{Tuple,Struct}::field` +
`Debug{Tuple,Struct}::finish` call sequence.
- `Formatter::debug_{tuple,struct}_fields_finish` is similar, but can
handle any number of fields by using arrays.
These new methods are all marked as `doc(hidden)` and unstable. They are
intended for the compiler's own use.
Special-casing up to 5 fields gives significantly better performance
results than always using arrays (as was tried in #95637).
The commit also changes the `Debug` deriving code to use these new methods. For
example, where the old `Debug` code for a struct with two fields would be like
this:
```
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match *self {
Self {
f1: ref __self_0_0,
f2: ref __self_0_1,
} => {
let debug_trait_builder = &mut ::core::fmt::Formatter::debug_struct(f, "S2");
let _ = ::core::fmt::DebugStruct::field(debug_trait_builder, "f1", &&(*__self_0_0));
let _ = ::core::fmt::DebugStruct::field(debug_trait_builder, "f2", &&(*__self_0_1));
::core::fmt::DebugStruct::finish(debug_trait_builder)
}
}
}
```
the new code is like this:
```
fn fmt(&self, f: &mut ::core::fmt::Formatter) -> ::core::fmt::Result {
match *self {
Self {
f1: ref __self_0_0,
f2: ref __self_0_1,
} => ::core::fmt::Formatter::debug_struct_field2_finish(
f,
"S2",
"f1",
&&(*__self_0_0),
"f2",
&&(*__self_0_1),
),
}
}
```
This shrinks the code produced for `Debug` instances
considerably, reducing compile times and binary sizes.
Co-authored-by: Scott McMurray <scottmcm@users.noreply.github.com>
It's a weird function: it lets you modify the token stream in the middle
of iteration. There is only one call site, and it is only used for the
rare `ProceduralMasquerade` legacy case.
Batch proc_macro RPC for TokenStream iteration and combination operations
This is the first part of #86822, split off as requested in https://github.com/rust-lang/rust/pull/86822#pullrequestreview-1008655452. It reduces the number of RPC calls required for common operations such as iterating over and concatenating TokenStreams.
This is an experimental patch to try to reduce the codegen complexity of
TokenStream's FromIterator and Extend implementations for downstream
crates, by moving the core logic into a helper type. This might help
improve build performance of crates which depend on proc_macro as
iterators are used less, and the compiler may take less time to do
things like attempt specializations or other iterator optimizations.
The change intentionally sacrifices some optimization opportunities,
such as using the specializations for collecting iterators derived from
Vec::into_iter() into Vec.
This is one of the simpler potential approaches to reducing the amount
of code generated in crates depending on proc_macro, so it seems worth
trying before other more-involved changes.
This significantly reduces the cost of common interactions with TokenStream
when running with the CrossThread execution strategy, by reducing the number of
RPC calls required.
Support lint expectations for `--force-warn` lints (RFC 2383)
Rustc has a `--force-warn` flag, which overrides lint level attributes and forces the diagnostics to always be warn. This means, that for lint expectations, the diagnostic can't be suppressed as usual. This also means that the expectation would not be fulfilled, even if a lint had been triggered in the expected scope.
This PR now also tracks the expectation ID in the `ForceWarn` level. I've also made some minor adjustments, to possibly catch more bugs and make the whole implementation more robust.
This will probably conflict with https://github.com/rust-lang/rust/pull/97718. That PR should ideally be reviewed and merged first. The conflict itself will be trivial to fix.
---
r? `@wesleywiser`
cc: `@flip1995` since you've helped with the initial review and also discussed this topic with me. 🙃
Follow-up of: https://github.com/rust-lang/rust/pull/87835
Issue: https://github.com/rust-lang/rust/issues/85549
Yeah, and that's it.
Never regard macro rules with compile_error! invocations as unused
The very point of compile_error! is to never be reached, and one of
the use cases of the macro, currently also listed as examples in the
documentation of compile_error, is to create nicer errors for wrong
macro invocations. Thus, we should never warn about unused macro arms
that contain invocations of compile_error.
See also https://github.com/rust-lang/rust/pull/96150#issuecomment-1126599107 and the discussion after that.
Furthermore, the PR also contains two commits to silence `unused_macro_rules` when a macro has an invalid rule, and to add a test that `unused_macros` does not behave badly in the same situation.
r? `@petrochenkov` as I've talked to them about this
Prior to this commit, if a macro had any malformed rules, all rules would
be reported as unused, regardless of whether they were used or not.
So we just turn off unused rule checking completely for macros with
malformed rules.
The very point of compile_error! is to never be reached, and one of
the use cases of the macro, currently also listed as examples in the
documentation of compile_error, is to create nicer errors for wrong
macro invocations. Thus, we shuuld never warn about unused macro arms
that contain invocations of compile_error.
Remove FIXME on `ExtCtxt::fn_decl()`
`ExtCtxt::fn_decl()` is used like `self.fn_decl(..)` or `self.cx.fn_decl(..)`, coverting it to an assoc fn, for example, makes it inconvenience (e.g. `self.cx.fn_decl(..)` would be longer to represent). Given that, it doesn't seem a "FIXME" thing and unused `self` is okay, I think.