When cross compiling on macOS with `llvm.link-shared` enabled,
the symlink creation will fail after compiling LLVM for the target
architecture, because it will attempt to create the symlink in the
host LLVM directory, which was already created when being built.
This commit changes the symlink path to the actual LLVM output.
It's common to see repeated assertions like this in derived `clone` and
`eq` methods:
```
let _: ::core::clone::AssertParamIsClone<u32>;
let _: ::core::clone::AssertParamIsClone<u32>;
```
This commit avoids them.
When cross compiling LLVM on an arm64 machine to x86_64, CMake will
produce universal binaries by default, causing link errors. Explicitly
set CMAKE_OSX_ARCHITECTURES to the one single target architecture.
rustdoc: make source sidebar toggle a real button
This fixes tab focus, so that you can open and close the sidebar from keyboard.
This should cause no visible change in appearance at all. The only way you'd know anything different is if you tried to use keyboard controls to open the source code file navigation sidebar.
Separated out from #98772
All derive ops currently use match-destructuring to access fields. This
is reasonable for enums, but sub-optimal for structs. E.g.:
```
fn eq(&self, other: &Point) -> bool {
match *other {
Self { x: ref __self_1_0, y: ref __self_1_1 } =>
match *self {
Self { x: ref __self_0_0, y: ref __self_0_1 } =>
(*__self_0_0) == (*__self_1_0) &&
(*__self_0_1) == (*__self_1_1),
},
}
}
```
This commit changes derive ops on structs to use field access instead, e.g.:
```
fn eq(&self, other: &Point) -> bool {
self.x == other.x && self.y == other.y
}
```
This is faster to compile, results in smaller binaries, and is simpler to
generate. Unfortunately, we have to keep the old pattern generating code around
for `repr(packed)` structs because something like `&self.x` (which doesn't show
up in `PartialEq` ops, but does show up in `Debug` and `Hash` ops) isn't
allowed. But this commit at least changes those cases to use let-destructuring
instead of match-destructuring, e.g.:
```
fn hash<__H: ::core:#️⃣:Hasher>(&self, state: &mut __H) -> () {
{
let Self(ref __self_0_0) = *self;
{ ::core:#️⃣:Hash::hash(&(*__self_0_0), state) }
}
}
```
There are some unnecessary blocks remaining in the generated code, but I
will fix them in a follow-up PR.
Rollup of 4 pull requests
Successful merges:
- #94831 (Link to stabilization section in std-dev-guide for library tracking issue template)
- #98764 (add Miri to the nightly docs)
- #98773 (rustdoc: use <details> tag for the source code sidebar)
- #98799 (Fix bug in `rustdoc -Whelp`)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Fix bug in `rustdoc -Whelp`
Previously, this printed the debugging options, not the lint options,
and only handled `-Whelp`, not `-A/-D/-F`.
This also fixes a few other misc issues:
- Fix `// check-stdout` for UI tests; previously it only worked for run-fail and compile-fail tests
- Add lint headers for tool lints, not just builtin lints
https://github.com/rust-lang/rust/pull/98533#issuecomment-1172004197
r? ```@GuillaumeGomez```
rustdoc: use <details> tag for the source code sidebar
This fixes the extremely poor accessibility of the old system, making it possible to navigate the sidebar by keyboard, and also implicitly gives the sidebar items the correct ARIA roles.
Split out separately from #98772
Clean up submodule checkout scripts
This is just some small cleanup:
* Removed unused CACHE_DIR stuff
* Removed duplicate fetch_github_commit_archive function which is no longer used
* Combined init_repo.sh and checkout-submodules.sh, as checkout-submodules.sh was doing nothing but calling init_repo.sh
`impl<T: AsRawFd> AsRawFd for {Arc,Box}<T>`
This allows implementing traits that require a raw FD on Arc and Box.
Previously, you'd have to add the function to the trait itself:
```rust
trait MyTrait {
fn as_raw_fd(&self) -> RawFd;
}
impl<T: MyTrait> MyTrait for Arc<T> {
fn as_raw_fd(&self) -> RawFd {
(**self).as_raw_fd()
}
}
```
In particular, this leads to lots of "multiple applicable items in scope" errors because you have to disambiguate `MyTrait::as_raw_fd` from `AsRawFd::as_raw_fd` at each call site. In generic contexts, when passing the type to a function that takes `impl AsRawFd` it's also sometimes required to use `T: MyTrait + AsRawFd`, which wouldn't be necessary if I could write `MyTrait: AsRawFd`.
After this PR, the code can be simpler:
```rust
trait MyTrait: AsRawFd {}
impl<T: MyTrait> MyTrait for Arc<T> {}
```