This is step 2 towards fixing #77548.
In the codegen and codegen-units test suites, the `//` comment markers
were kept in order not to affect any source locations. This is because
these tests cannot be automatically `--bless`ed.
Adds bootstrap rules to support installing rust-demangler.
When compiling with `-Z instrument-coverage`, the coverage reports are
generated by `llvm-cov`. `llvm-cov` includes a built-in demangler for
C++, and an option to supply an alternate demangler. For Rust, we have
`rust-demangler`, currently used in `rustc` coverage tests.
Fuchsia's toolchain for Rust is built via `./x.py install`. Fuchsia is
adding support for Rust coverage, and we need to include the
`rust-demangler` in the installed `bin` directory.
Configured rust-demangler as an in-tree extended tool.
Added tests to support `./x.py test rust-demangler`.
Install with extended tools by default only if `profiler = true`.
Remove nightly features in rustc_type_ir
`rustc_type_ir` will be used as a type library by Chalk, which we want to be able to build on stable, so this PR removes the current nightly features used.
Document "standard" conventions for error messages
These are currently documented in the API guidelines:
https://rust-lang.github.io/api-guidelines/interoperability.html#error-types-are-meaningful-and-well-behaved-c-good-err
I think it makes sense to uplift this guideline (in a milder form) into
std docs. Printing and producing errors is something that even
non-expert users do frequently, so it is useful to give at least some
indication of what a typical error message looks like.
Add an Mmap wrapper to rustc_data_structures
This wrapper implements StableAddress and falls back to directly reading the file on wasm32.
Taken from #83640, which I will close due to the perf regression.
rustdoc: Don't load all extern crates unconditionally
Instead, only load the crates that are linked to with intra-doc links.
This doesn't help very much with any of rustdoc's fundamental issues
with freezing the resolver, but it at least fixes a stable-to-stable
regression, and makes the crate loading model somewhat more consistent
with rustc's. I tested and it unfortunately does not help at all with https://github.com/rust-lang/rust/pull/82496.
Closes https://github.com/rust-lang/rust/issues/68427. Let me know if you want me to open a separate issue for not freezing the resolver.
r? `@petrochenkov` cc `@eddyb` `@ollie27`
tidy: Add ignore-rules for the line length check
This is step 1 towards fixing https://github.com/rust-lang/rust/issues/77548.
This PR contains the `tidy` change from https://github.com/rust-lang/rust/pull/77675. The "ignoring file length unnecessarily" check is temporarily disabled to simplify landing the ignore-rules. This check will be re-enabled in a follow-up PR.
This is step 1 towards fixing #77548.
This commit includes the tidy change from #77675.
The "ignoring file length unnecessarily" check is temporarily
disabled to simplify landing the ignore-rules.
That check will be re-enabled in a follow-up PR.
Translate counters from Rust 1-based to LLVM 0-based counter ids
A colleague contacted me and asked why Rust's counters start at 1, when
Clangs appear to start at 0. There is a reason why Rust's internal
counters start at 1 (see the docs), and I tried to keep them consistent
when codegenned to LLVM's coverage mapping format. LLVM should be
tolerant of missing counters, but as my colleague pointed out,
`llvm-cov` will silently fail to generate a coverage report for a
function based on LLVM's assumption that the counters are 0-based.
See:
https://github.com/llvm/llvm-project/blob/main/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp#L170
Apparently, if, for example, a function has no branches, it would have
exactly 1 counter. `CounterValues.size()` would be 1, and (with the
1-based index), the counter ID would be 1. This would fail the check
and abort reporting coverage for the function.
It turns out that by correcting for this during coverage map generation,
by subtracting 1 from the Rust Counter ID (both when generating the
counter increment intrinsic call, and when adding counters to the map),
some uncovered functions (including in tests) now appear covered! This
corrects the coverage for a few tests!
r? `@tmandry`
FYI: `@wesleywiser`
Avoid sorting by DefId for `necessary_variants()`
Follow-up to https://github.com/rust-lang/rust/pull/83074. Originally I tried removing `impl Ord for DefId` but that hit *lots* of errors 😅 so I thought I would start with easy things.
I am not sure whether this could actually cause invalid query results, but this is used from `MarkSymbolVisitor::visit_arm` so it's at least feasible.
r? `@Aaron1011`
A colleague contacted me and asked why Rust's counters start at 1, when
Clangs appear to start at 0. There is a reason why Rust's internal
counters start at 1 (see the docs), and I tried to keep them consistent
when codegenned to LLVM's coverage mapping format. LLVM should be
tolerant of missing counters, but as my colleague pointed out,
`llvm-cov` will silently fail to generate a coverage report for a
function based on LLVM's assumption that the counters are 0-based.
See:
https://github.com/llvm/llvm-project/blob/main/llvm/lib/ProfileData/Coverage/CoverageMapping.cpp#L170
Apparently, if, for example, a function has no branches, it would have
exactly 1 counter. `CounterValues.size()` would be 1, and (with the
1-based index), the counter ID would be 1. This would fail the check
and abort reporting coverage for the function.
It turns out that by correcting for this during coverage map generation,
by subtracting 1 from the Rust Counter ID (both when generating the
counter increment intrinsic call, and when adding counters to the map),
some uncovered functions (including in tests) now appear covered! This
corrects the coverage for a few tests!
Maintain supported sanitizers as a target property
In an effort to remove a hard-coded allow-list for target-sanitizer support correspondence, this PR moves the configuration to the target options.
Perhaps the one notable change made in this PR is this doc-comment:
```rust
/// The sanitizers supported by this target
///
/// Note that the support here is at a codegen level. If the machine code with sanitizer
/// enabled can generated on this target, but the necessary supporting libraries are not
/// distributed with the target, the sanitizer should still appear in this list for the target.
```
Previously the target would typically be added to the allow-list at the same time as the supporting runtime libraries are shipped for the target. However whether we ship the runtime libraries or not needn't be baked into the compiler; and if we don't users will receive a significantly more directed error about library not being found.
Fixes#81802