Make ptr::write const
~~The code in this PR as of right now is not much more than an experiment.~~
~~This should, if I am not mistaken, in theory compile and pass the tests once the bootstraping compiler is updated. Thus the PR is blocked on that which should happen some time after the February the 9th. Also we might want to wait for #79989 to avoid regressing performance due to using `mem::forget` over `intrinsics::forget`~~.
Add tests for Atomic*::fetch_{min,max}
This ensures that all atomic operations except for fences are tested. This has been useful to test my work on using atomic instructions for atomic operations in cg_clif instead of a global lock.
Implement RFC 2580: Pointer metadata & VTable
RFC: https://github.com/rust-lang/rfcs/pull/2580
~~Before merging this PR:~~
* [x] Wait for the end of the RFC’s [FCP to merge](https://github.com/rust-lang/rfcs/pull/2580#issuecomment-759145278).
* [x] Open a tracking issue: https://github.com/rust-lang/rust/issues/81513
* [x] Update `#[unstable]` attributes in the PR with the tracking issue number
----
This PR extends the language with a new lang item for the `Pointee` trait which is special-cased in trait resolution to implement it for all types. Even in generic contexts, parameters can be assumed to implement it without a corresponding bound.
For this I mostly imitated what the compiler was already doing for the `DiscriminantKind` trait. I’m very unfamiliar with compiler internals, so careful review is appreciated.
This PR also extends the standard library with new unstable APIs in `core::ptr` and `std::ptr`:
```rust
pub trait Pointee {
/// One of `()`, `usize`, or `DynMetadata<dyn SomeTrait>`
type Metadata: Copy + Send + Sync + Ord + Hash + Unpin;
}
pub trait Thin = Pointee<Metadata = ()>;
pub const fn metadata<T: ?Sized>(ptr: *const T) -> <T as Pointee>::Metadata {}
pub const fn from_raw_parts<T: ?Sized>(*const (), <T as Pointee>::Metadata) -> *const T {}
pub const fn from_raw_parts_mut<T: ?Sized>(*mut (),<T as Pointee>::Metadata) -> *mut T {}
impl<T: ?Sized> NonNull<T> {
pub const fn from_raw_parts(NonNull<()>, <T as Pointee>::Metadata) -> NonNull<T> {}
/// Convenience for `(ptr.cast(), metadata(ptr))`
pub const fn to_raw_parts(self) -> (NonNull<()>, <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *const T {
pub const fn to_raw_parts(self) -> (*const (), <T as Pointee>::Metadata) {}
}
impl<T: ?Sized> *mut T {
pub const fn to_raw_parts(self) -> (*mut (), <T as Pointee>::Metadata) {}
}
/// `<dyn SomeTrait as Pointee>::Metadata == DynMetadata<dyn SomeTrait>`
pub struct DynMetadata<Dyn: ?Sized> {
// Private pointer to vtable
}
impl<Dyn: ?Sized> DynMetadata<Dyn> {
pub fn size_of(self) -> usize {}
pub fn align_of(self) -> usize {}
pub fn layout(self) -> crate::alloc::Layout {}
}
unsafe impl<Dyn: ?Sized> Send for DynMetadata<Dyn> {}
unsafe impl<Dyn: ?Sized> Sync for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Debug for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Unpin for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Copy for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Clone for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Eq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialEq for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Ord for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> PartialOrd for DynMetadata<Dyn> {}
impl<Dyn: ?Sized> Hash for DynMetadata<Dyn> {}
```
API differences from the RFC, in areas noted as unresolved questions in the RFC:
* Module-level functions instead of associated `from_raw_parts` functions on `*const T` and `*mut T`, following the precedent of `null`, `slice_from_raw_parts`, etc.
* Added `to_raw_parts`
The use of module-level functions instead of associated functions
on `<*const T>` or `<*mut T>` follows the precedent of
`ptr::slice_from_raw_parts` and `ptr::slice_from_raw_parts_mut`.
Stabilize by-value `[T; N]` iterator `core::array::IntoIter`
Tracking issue: https://github.com/rust-lang/rust/issues/65798
This is unblocked now that `min_const_generics` has been stabilized in https://github.com/rust-lang/rust/pull/79135.
This PR does *not* include the corresponding `IntoIterator` impl, which is https://github.com/rust-lang/rust/pull/65819. Instead, an iterator can be constructed through the `new` method.
`new` would become unnecessary when `IntoIterator` is implemented and might be deprecated then, although it will stay stable.
Add `unwrap_unchecked()` methods for `Option` and `Result`
In particular:
- `unwrap_unchecked()` for `Option`.
- `unwrap_unchecked()` and `unwrap_err_unchecked()` for `Result`.
These complement other `*_unchecked()` methods in `core` etc.
Currently there are a couple of places it may be used inside rustc (`LinkedList`, `BTree`). It is also easy to find other repositories with similar functionality.
Fixes#48278.
TrustedRandomAaccess specialization composes incorrectly for nested iter::Zips
I found this while working on improvements for TRA.
After partially consuming a Zip adapter and then wrapping it into another Zip where the adapters use their `TrustedRandomAccess` specializations leads to the outer adapter returning elements which should have already been consumed.
If the optimizer gets tripped up by the addition this might affect performance for chained `zip()` iterators even when the inner one is not partially advanced but it would require more extensive fixes to `TrustedRandomAccess` to communicate those offsets earlier.
Included test fails on nightly, [playground link](https://play.rust-lang.org/?version=nightly&mode=debug&edition=2018&gist=24fa1edf8a104ff31f5a24830593b01f)
Add Iterator::intersperse_with
This is a follow-up to #79479, tracking in #79524, as discussed https://github.com/rust-lang/rust/pull/79479#issuecomment-752671731.
~~Note that I had to manually implement `Clone` and `Debug` because `derive` insists on placing a `Clone`-bound on the struct-definition, which is too narrow. There is a long-standing issue # for this somewhere around here :-)~~
Also, note that I refactored the guts of `Intersperse` into private functions and re-used them in `IntersperseWith`, so I also went light on duplicating all the tests.
If this is suitable to be merged, the tracking issue should be updated, since it only mentions `intersperse`.
Happy New Year!
r? ``@m-ou-se``
These tests invoke the various op traits using all accepted types they
are implemented for as well as for references to those types.
This fixes#49660 and ensures the following implementations exist:
* `Add`, `Sub`, `Mul`, `Div`, `Rem`
* `T op T`, `T op &T`, `&T op T` and `&T op &T`
* for all integer and floating point types
* `AddAssign`, `SubAssign`, `MulAssign`, `DivAssign`, `RemAssign`
* `&mut T op T` and `&mut T op &T`
* for all integer and floating point types
* `Neg`
* `op T` and `op &T`
* for all signed integer and floating point types
* `Not`
* `op T` and `op &T`
* for `bool`
* `BitAnd`, `BitOr`, `BitXor`
* `T op T`, `T op &T`, `&T op T` and `&T op &T`
* for all integer types and bool
* `BitAndAssign`, `BitOrAssign`, `BitXorAssign`
* `&mut T op T` and `&mut T op &T`
* for all integer types and bool
* `Shl`, `Shr`
* `L op R`, `L op &R`, `&L op R` and `&L op &R`
* for all pairs of integer types
* `ShlAssign`, `ShrAssign`
* `&mut L op R`, `&mut L op &R`
* for all pairs of integer types
In particular:
- `unwrap_unchecked()` for `Option`.
- `unwrap_unchecked()` and `unwrap_err_unchecked()` for `Result`.
These complement other `*_unchecked()` methods in `core` etc.
Currently there are a couple of places it may be used inside rustc
(`LinkedList`, `BTree`). It is also easy to find other repositories
with similar functionality.
Fixes#48278.
Signed-off-by: Miguel Ojeda <ojeda@kernel.org>
After partially consuming a Zip adapter and then wrapping it into
another Zip where the adapters use their TrustedRandomAccess specializations
leads to the outer adapter returning elements which should have already been
consumed.
The return of the GroupBy and GroupByMut iterators on slice
According to https://github.com/rust-lang/rfcs/pull/2477#issuecomment-742034372, I am opening this PR again, this time I implemented it in safe Rust only, it is therefore much easier to read and is completely safe.
This PR proposes to add two new methods to the slice, the `group_by` and `group_by_mut`. These two methods provide a way to iterate over non-overlapping sub-slices of a base slice that are separated by the predicate given by the user (e.g. `Partial::eq`, `|a, b| a.abs() < b.abs()`).
```rust
let slice = &[1, 1, 1, 3, 3, 2, 2, 2];
let mut iter = slice.group_by(|a, b| a == b);
assert_eq!(iter.next(), Some(&[1, 1, 1][..]));
assert_eq!(iter.next(), Some(&[3, 3][..]));
assert_eq!(iter.next(), Some(&[2, 2, 2][..]));
assert_eq!(iter.next(), None);
```
[An RFC](https://github.com/rust-lang/rfcs/pull/2477) was open 2 years ago but wasn't necessary.
Rollup of 9 pull requests
Successful merges:
- #78934 (refactor: removing library/alloc/src/vec/mod.rs ignore-tidy-filelength)
- #79479 (Add `Iterator::intersperse`)
- #80128 (Edit rustc_ast::ast::FieldPat docs)
- #80424 (Don't give an error when creating a file for the first time)
- #80458 (Some Promotion Refactoring)
- #80488 (Do not create dangling &T in Weak<T>::drop)
- #80491 (Miri: make size/align_of_val work for dangling raw ptrs)
- #80495 (Rename kw::Invalid -> kw::Empty)
- #80513 (Add regression test for #80062)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup