Permit `asm_const` and `asm_sym` to reference generic params
Related #96557
These constructs will be allowed:
```rust
fn foofoo<const N: usize>() {}
unsafe fn foo<const N: usize>() {
asm!("/* {0} */", const N);
asm!("/* {0} */", const N + 1);
asm!("/* {0} */", sym foofoo::<N>);
}
fn barbar<T>() {}
unsafe fn bar<T>() {
asm!("/* {0} */", const std::mem::size_of::<T>());
asm!("/* {0} */", const std::mem::size_of::<(T, T)>());
asm!("/* {0} */", sym barbar::<T>);
asm!("/* {0} */", sym barbar::<(T, T)>);
}
```
`@Amanieu,` I didn't switch inline asms to use `DefKind::InlineAsm`, as I see little value doing that; given that no type inference is needed, it will only make typecking slower and more complex but will have no real gains. I did switch them to follow the same code path as inline asm during symbol resolution, though.
The `error: unconstrained generic constant` you mentioned in #76001 is due to the fact that `to_const` will actually add a wfness obligation to the constant, which we don't need for `asm_const`, so I have that removed.
`@rustbot` label: +A-inline-assembly +F-asm
Mention traits and types involved in unstable trait upcasting
Fixes#95972 by printing the traits being upcasted and the types being coerced that cause that upcasting...
---
the poor span mentioned in the original issue has nothing to do with trait upcasting diagnostic here...
> The original example I had that made me run into this issue had an even longer expression there (multiple chained
iterator methods) which just got all highlighted as one big block saying "somewhere here trait coercion is used and it's not allowed".
I don't think I can solve that issue in general without fixing the ObligationCauseCode and span that gets passed into Coerce.
Add a query for checking whether a function is an intrinsic.
work towards #93145
This will reduce churn when we add more ways to declare intrinsics
r? `@scottmcm`
Add EarlyBinder
Chalk has no concept of `Param` (e0ade19d13/chalk-ir/src/lib.rs (L579)) or `ReEarlyBound` (e0ade19d13/chalk-ir/src/lib.rs (L1308)). Everything is just "bound" - the equivalent of rustc's late-bound. It's not completely clear yet whether to move everything to the same time of binder in rustc or add `Param` and `ReEarlyBound` in Chalk.
Either way, tracking when we have or haven't already substituted out these in rustc can be helpful.
As a first step, I'm just adding a `EarlyBinder` newtype that is required to call `subst`. I also add a couple "transparent" `bound_*` wrappers around a couple query that are often immediately substituted.
r? `@nikomatsakis`
Drop tracking: handle invalid assignments better
Previously this test case was crashing with an index out of bounds error deep in the call to `needs_drop`. We avoid this by detecting clearly invalid assignees in the `mutate` callback and ignoring these.
Previously this test case was crashing with an index out of bounds error
deep in the call to `needs_drop`. We avoid this by detecting clearly
invalid assignees in the `mutate` callback and ignoring these.
don't encode only locally used attrs
Part of https://github.com/rust-lang/compiler-team/issues/505.
We now filter builtin attributes before encoding them in the crate metadata in case they should only be used in the local crate. To prevent accidental misuse `get_attrs` now requires the caller to state which attribute they are interested in. For places where that isn't trivially possible, I've added a method `fn get_attrs_unchecked` which I intend to remove in a followup PR.
After this pull request landed, we can then slowly move all attributes to only be used in the local crate while being certain that we don't accidentally try to access them from extern crates.
cc https://github.com/rust-lang/rust/pull/94963#issuecomment-1082924289
Port the "the type parameter `T` must be explicitly specified"
diagnostic to using a diagnostic struct.
Signed-off-by: David Wood <david.wood@huawei.com>
Using new support for spanless subdiagnostics from `()` fields in the
diagnostic derive, simplify the "explicit generic args with impl trait"
diagnostic's struct.
Signed-off-by: David Wood <david.wood@huawei.com>
Like we have `add`/`sub` which are the `usize` version of `offset`, this adds the `usize` equivalent of `offset_from`. Like how `.add(d)` replaced a whole bunch of `.offset(d as isize)`, you can see from the changes here that it's fairly common that code actually knows the order between the pointers and *wants* a `usize`, not an `isize`.
As a bonus, this can do `sub nuw`+`udiv exact`, rather than `sub`+`sdiv exact`, which can be optimized slightly better because it doesn't have to worry about negatives. That's why the slice iterators weren't using `offset_from`, though I haven't updated that code in this PR because slices are so perf-critical that I'll do it as its own change.
This is an intrinsic, like `offset_from`, so that it can eventually be allowed in CTFE. It also allows checking the extra safety condition -- see the test confirming that CTFE catches it if you pass the pointers in the wrong order.
Handle mismatched generic param kinds in trait impls betterly
- Check that generic params on a generic associated type are the same as in the trait definition
- Check that const generics are not used in place of type generics (and the other way round too)
r? `@lcnr`
Properly fix#96638Closes#96638
The main part of this change is `Error::Invalid` now returns both the input and arg indices. However, I realized the code here was kind of confusing and not internally consistent (and thus I was having trouble getting the right behavior). So I've also switched `input_indices` and `arg_indices` to more closely match some naming in `checks` (although I think a more thorough cleanup there could be beneficial). I've added comments, but essentially `input_indices` refers to *user provided* inputs and `arg_indices` refers to *expected* args.
Fortify handing of where bounds on trait & trait alias definitions
Closes https://github.com/rust-lang/rust/issues/96664
Closes https://github.com/rust-lang/rust/issues/96665
Since https://github.com/rust-lang/rust/pull/93803, when listing all bounds and predicates we now need to account for the possible presence of predicates on any of the generic parameters. Both bugs were hidden by the special handling of bounds at the generic parameter declaration position.
Trait alias expansion used to confuse predicates on `Self` and where predicates.
Exiting too late when listing all the bounds caused a cycle error.
Some subst cleanup
Two separate things here. Both changes are useful for some refactoring I'm doing to add an "EarlyBinder" newtype. (Part of chalkification).
1) Remove `subst_spanned` and just use `subst`. It wasn't used much anyways. In practice, I think we can probably get most of the info just from the actual error message. If not, outputting logs should do the trick. (The specific line probably wouldn't help much anyways).
2) Call `.subst()` before `replace_bound_vars_with_fresh_vars` and `erase_late_bound_regions` in three places that do the opposite. I think there might have been some time in the past that the order here matter for something, but this shouldn't be the case anymore. Conceptually, it makes more sense to the of the *early bound* vars on `fn`s as "outside" the late bound vars.
diagnostics: port more diagnostics to derive + add support for `Vec` fields
- Port "unconstrained opaque type" diagnostic to using the derive.
- Allow `Vec` fields in diagnostic derive - enables support for diagnostics that have multiple primary spans, or have subdiagnostics repeated at multiple locations. `Vec<..>` fields in the diagnostic derive become loops in the generated code.
- Add `create_{err,warning}` - there wasn't a way to create a diagnostic from a struct and not emit it straight away.
- Port "explicit generic args w/ impl trait" diagnostic to using the derive.
r? `````@oli-obk`````
cc `````@pvdrz`````