This commit fixes all of the fallout of the previous commit which is an attempt
to refine privacy. There were a few unfortunate leaks which now must be plugged,
and the most horrible one is the current `shouldnt_be_public` module now inside
`std::rt`. I think that this either needs a slight reorganization of the
runtime, or otherwise it needs to just wait for the external users of these
modules to get replaced with their `rt` implementations.
Other fixes involve making things pub which should be pub, and otherwise
updating error messages that now reference privacy instead of referencing an
"unresolved name" (yay!).
This commit is the culmination of my recent effort to refine Rust's notion of
privacy and visibility among crates. The major goals of this commit were to
remove privacy checking from resolve for the sake of sane error messages, and to
attempt a much more rigid and well-tested implementation of visibility
throughout rust. The implemented rules for name visibility are:
1. Everything pub from the root namespace is visible to anyone
2. You may access any private item of your ancestors.
"Accessing a private item" depends on what the item is, so for a function this
means that you can call it, but for a module it means that you can look inside
of it. Once you look inside a private module, any accessed item must be "pub
from the root" where the new root is the private module that you looked into.
These rules required some more analysis results to get propagated from trans to
privacy in the form of a few hash tables.
I added a new test in which my goal was to showcase all of the privacy nuances
of the language, and I hope to place any new bugs into this file to prevent
regressions.
Overall, I was unable to completely remove the notion of privacy from resolve.
One use of privacy is for dealing with glob imports. Essentially a glob import
can only import *public* items from the destination, and because this must be
done at namespace resolution time, resolve must maintain the notion of "what
items are public in a module". There are some sad approximations of privacy, but
I unfortunately can't see clear methods to extract them outside.
The other use case of privacy in resolve now is one that must stick around
regardless of glob imports. When dealing with privacy, checking a private path
needs to know "what the last private thing was" when looking at a path. Resolve
is the only compiler pass which knows the answer to this question, so it
maintains the answer on a per-path resolution basis (works similarly to the
def_map generated).
Closes#8215
A few features are now hidden behind various #[feature(...)] directives. These
include struct-like enum variants, glob imports, and macro_rules! invocations.
Closes#9304Closes#9305Closes#9306Closes#9331
This PR solves one of the pain points with c-style enums. Simplifies writing a fn to convert from an int/uint to an enum. It does this through a `#[deriving(FromPrimitive)]` syntax extension.
Before this is committed though, we need to discuss if `ToPrimitive`/`FromPrimitive` has the right design (cc #4819). I've changed all the `.to_int()` and `from_int()` style functions to return `Option<int>` so we can handle partial functions. For this PR though only enums and `extra::num::bigint::*` take advantage of returning None for unrepresentable values. In the long run it'd be better if `i64.to_i8()` returned `None` if the value was too large, but I'll save this for a future PR.
Closes#3868.
Replaces existing tests for removed obsolete-syntax errors with tests
for the resulting regular errors, adds a test for each of the removed
parser errors to make sure that obsolete forms don't start working
again, removes some obsolete/superfluous tests that were now failing.
Deletes some amount of dead code in the parser, also includes some small
changes to parser error messages to accomodate new tests.
This purges about 500 lines of visitor cruft from lint passes. All lints are
handled in a much more sane way at this point. The other huge bonus of this
commit is that there are no more @-boxes in the lint passes, fixing the 500MB
memory regression seen when the lint passes were refactored.
Closes#8589
One downside with this current implementation is that since BigInt's
default is now 64 bit, we can convert larger BigInt's to a primitive,
however the current implementation on 32 bit architectures does not
take advantage of this fact.
That is, only a single expression or item gets parsed, so if there are
any extra tokens (e.g. the start of another item/expression) the user
should be told, rather than silently dropping them.
An example:
macro_rules! foo {
() => {
println("hi");
println("bye);
}
}
would expand to just `println("hi")`, which is almost certainly not
what the programmer wanted.
Fixes#8012.
That is, only a single expression or item gets parsed, so if there are
any extra tokens (e.g. the start of another item/expression) the user
should be told, rather than silently dropping them.
An example:
macro_rules! foo {
() => {
println("hi");
println("bye);
}
}
would expand to just `println("hi")`, which is almost certainly not
what the programmer wanted.
Fixes#8012.
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
It is simply defined as `f64` across every platform right now.
A use case hasn't been presented for a `float` type defined as the
highest precision floating point type implemented in hardware on the
platform. Performance-wise, using the smallest precision correct for the
use case greatly saves on cache space and allows for fitting more
numbers into SSE/AVX registers.
If there was a use case, this could be implemented as simply a type
alias or a struct thanks to `#[cfg(...)]`.
Closes#6592
The mailing list thread, for reference:
https://mail.mozilla.org/pipermail/rust-dev/2013-July/004632.html
We're not outright removing fmt! just yet, but this prevents it from leaking
into the compiler further (it's still turned on by default for all other code).
As mentioned in #9456, the format! syntax extension would previously consider an
empty format as a 'Unknown' format which could then also get coerced into a
different style of format on another argument.
This is unusual behavior because `{}` is a very common format and if you have
`{0} {0:?}` you wouldn't expect them both to be coereced to the `Poly`
formatter. This commit removes this coercion, but still retains the requirement
that each argument has exactly one format specified for it (an empty format now
counts as well).
Perhaps at a later date we can add support for multiple formats of one argument,
but this puts us in at least a backwards-compatible situation if we decide to do
that.
As mentioned in #9456, the format! syntax extension would previously consider an
empty format as a 'Unknown' format which could then also get coerced into a
different style of format on another argument.
This is unusual behavior because `{}` is a very common format and if you have
`{0} {0:?}` you wouldn't expect them both to be coereced to the `Poly`
formatter. This commit removes this coercion, but still retains the requirement
that each argument has exactly one format specified for it (an empty format now
counts as well).
Perhaps at a later date we can add support for multiple formats of one argument,
but this puts us in at least a backwards-compatible situation if we decide to do
that.
This lifts various restrictions on the runtime, for example the character limit
when logging a message. Right now the old debug!-style macros still involve
allocating (because they use fmt! syntax), but the new debug2! macros don't
involve allocating at all (unless the formatter for a type requires allocation.
This slurps up everything inside of an 'extern' block into the enclosing module
in order to document them. The documentation must be on the items themselves,
and they'll show up next to everything else on the module index pages.
Closes#5953
This lifts various restrictions on the runtime, for example the character limit
when logging a message. Right now the old debug!-style macros still involve
allocating (because they use fmt! syntax), but the new debug2! macros don't
involve allocating at all (unless the formatter for a type requires allocation.
There is less implicit removal of various comment styles, and it also removes
extraneous stars occasionally found in docblock comments. It turns out that the
bug for getops was just a differently formatted block.
Closes#9425Closes#9417
This fixes private statics and functions from being usable cross-crates, along
with some bad privacy error messages. This is a reopening of #8365 with all the
privacy checks in privacy.rs instead of resolve.rs (where they should be
anyway).
These maps of exported items will hopefully get used for generating
documentation by rustdoc
Closes#8592
As documented in issue #7945, these literal identifiers are all accepted by rust
today, but they should probably be disallowed (especially `'''`). This changes
all escapable sequences to being *required* to be escaped.
Closes#7945
I wanted to write the tests with more exact spans, but I think #9308 will be fixing that?
As documented in issue #7945, these literal identifiers are all accepted by rust
today, but they should probably be disallowed (especially `'''`). This changes
all escapable sequences to being *required* to be escaped.
Closes#7945
Progress on #7981
This doesn't completely close the issue because `struct A;` is still allowed, and it's a much larger change to disallow that. I'm also not entirely sure that we want to disallow that. Regardless, punting that discussion to the issue instead.
This fixes private statics and functions from being usable cross-crates, along
with some bad privacy error messages. This is a reopening of #8365 with all the
privacy checks in privacy.rs instead of resolve.rs (where they should be
anyway).
These maps of exported items will hopefully get used for generating
documentation by rustdoc
Closes#8592
This large commit implements and `html` output option for rustdoc_ng. The
executable has been altered to be invoked as "rustdoc_ng html <crate>" and
it will dump everything into the local "doc" directory. JSON can still be
generated by changing 'html' to 'json'.
This also fixes a number of bugs in rustdoc_ng relating to comment stripping,
along with some other various issues that I found along the way.
The `make doc` command has been altered to generate the new documentation into
the `doc/ng/$(CRATE)` directories.
Many people will be very confused that their debug! statements aren't working
when they first use rust only to learn that they should have been building with
`--cfg debug` the entire time. This inverts the meaning of the flag to instead
of enabling debug statements, now it disables debug statements.
This way the default behavior is a bit more reasonable, and requires less
end-user configuration. Furthermore, this turns on debug by default when
building the rustc compiler.
Previously, the lexer calling `rdr.fatal(...)` would report the span of
the last complete token, instead of a span within the erroneous token
(besides one span fixed in 1ac90bb).
This branch adds wrappers around `rdr.fatal(...)` that sets the span
explicilty, so that all fatal errors in `libsyntax/parse/lexer.rs` now
report the offending code more precisely. A number of tests try to
verify that, though the `compile-fail` testing setup can only check that
the spans are on the right lines, and the "unterminated string/block
comment" errors can't have the line marked at all, so that's incomplete.
This closes#9149.
Also, the lexer errors now report the offending code in the error message,
not just via the span, just like other errors do.
... instead of giving their numeric codepoint, following the lead of
fdaae34. So the error message for, say, '\_' mentions _ instead of 95,
and '\●' now mentions \u25cf.
Previously, the lexer calling `rdr.fatal(...)` would report the span of
the last complete token, instead of a span within the erroneous token
(besides one span fixed in 1ac90bb).
This commit adds a wrapper around `rdr.fatal(...)` that sets the span
explicilty, so that all fatal errors in `libsyntax/parse/lexer.rs` now
report the offending code more precisely. A number of tests try to
verify that, though the `compile-fail` testing setup can only check that
the spans are on the right lines, and the "unterminated string/block
comment" errors can't have the line marked at all, so that's incomplete.
Closes#9149.
This is my first contribution, so please point out anything that I may have missed.
I consulted IRC and settled on `match () { ... }` for most of the replacements.
Since 3b6314c the pretty printer seems to only print trait bounds for `ast::ty_path(...)`s that have a generics arguments list. That seems wrong, so let's always print them.
Closes#9253, un-xfails test for #7673.
This commit adds support for `\0` escapes in character and string literals.
Since `\0` is equivalent to `\x00`, this is a direct translation to the latter
escape sequence. Future builds will be able to compile using `\0` directly.
Also updated the grammar specification and added a test for NUL characters.
Since 3b6314c3 the pretty printer seems to only print trait bounds for
`ast::ty_path(...)`s that have a generics arguments list. That seems
wrong, so let's always print them.
Closes#9253, un-xfails test for #7673.
This constrains the span to the appropriate argument, so you know which
one caused the problem. Instead of
foo.rs:2:4: 2:21 error: Too large integer literal in bytes!
foo.rs:2 bytes!(1, 256, 2)
^~~~~~~~~~~~~~~~~
it will say
foo.rs:2:14 2:17 error: Too large integer literal in bytes!
foo.rs:2 bytes!(1, 256, 2)
^~~
This doesn't close any bugs as the goal is to convert the parameter to by-value, but this is a step towards being able to make guarantees about `&T` pointers (where T is Freeze) to LLVM.
This constrains the span to the appropriate argument, so you know which
one caused the problem. Instead of
foo.rs:2:4: 2:21 error: Too large integer literal in bytes!
foo.rs:2 bytes!(1, 256, 2)
^~~~~~~~~~~~~~~~~
it will say
foo.rs:2:14 2:17 error: Too large integer literal in bytes!
foo.rs:2 bytes!(1, 256, 2)
^~~
Remove these in favor of the two traits themselves and the wrapper
function std::from_str::from_str.
Add the function std::num::from_str_radix in the corresponding role for
the FromStrRadix trait.
The same fix as before is still relevant, I just forgot to update the
expand_stmt macro expansion site. The tests for format!() suffice as tests for
this change.
This renames the syntax-extension file to format from ifmt, and it also reduces
the amount of complexity inside by defining all other macros in terms of
format_args!