This commit completes the deprecation story for the in-tree serialization
library. The compiler will now emit a warning whenever it encounters
`deriving(Encodable)` or `deriving(Decodable)`, and the library itself is now
marked `#[unstable]` for when feature staging is enabled.
All users of serialization can migrate to the `rustc-serialize` crate on
crates.io which provides the exact same interface as the libserialize library
in-tree. The new deriving modes are named `RustcEncodable` and `RustcDecodable`
and require `extern crate "rustc-serialize" as rustc_serialize` at the crate
root in order to expand correctly.
To migrate all crates, add the following to your `Cargo.toml`:
[dependencies]
rustc-serialize = "0.1.1"
And then add the following to your crate root:
extern crate "rustc-serialize" as rustc_serialize;
Finally, rename `Encodable` and `Decodable` deriving modes to `RustcEncodable`
and `RustcDecodable`.
[breaking-change]
This commit completes the deprecation story for the in-tree serialization
library. The compiler will now emit a warning whenever it encounters
`deriving(Encodable)` or `deriving(Decodable)`, and the library itself is now
marked `#[unstable]` for when feature staging is enabled.
All users of serialization can migrate to the `rustc-serialize` crate on
crates.io which provides the exact same interface as the libserialize library
in-tree. The new deriving modes are named `RustcEncodable` and `RustcDecodable`
and require `extern crate "rustc-serialize" as rustc_serialize` at the crate
root in order to expand correctly.
To migrate all crates, add the following to your `Cargo.toml`:
[dependencies]
rustc-serialize = "0.1.1"
And then add the following to your crate root:
extern crate "rustc-serialize" as rustc_serialize;
Finally, rename `Encodable` and `Decodable` deriving modes to `RustcEncodable`
and `RustcDecodable`.
[breaking-change]
This commit is part of a series that introduces a `std::thread` API to
replace `std::task`.
In the new API, `spawn` returns a `JoinGuard`, which by default will
join the spawned thread when dropped. It can also be used to join
explicitly at any time, returning the thread's result. Alternatively,
the spawned thread can be explicitly detached (so no join takes place).
As part of this change, Rust processes now terminate when the main
thread exits, even if other detached threads are still running, moving
Rust closer to standard threading models. This new behavior may break code
that was relying on the previously implicit join-all.
In addition to the above, the new thread API also offers some built-in
support for building blocking abstractions in user space; see the module
doc for details.
Closes#18000
[breaking-change]
followed by a semicolon.
This allows code like `vec![1i, 2, 3].len();` to work.
This breaks code that uses macros as statements without putting
semicolons after them, such as:
fn main() {
...
assert!(a == b)
assert!(c == d)
println(...);
}
It also breaks code that uses macros as items without semicolons:
local_data_key!(foo)
fn main() {
println("hello world")
}
Add semicolons to fix this code. Those two examples can be fixed as
follows:
fn main() {
...
assert!(a == b);
assert!(c == d);
println(...);
}
local_data_key!(foo);
fn main() {
println("hello world")
}
RFC #378.
Closes#18635.
[breaking-change]
This change makes the compiler no longer infer whether types (structures
and enumerations) implement the `Copy` trait (and thus are implicitly
copyable). Rather, you must implement `Copy` yourself via `impl Copy for
MyType {}`.
A new warning has been added, `missing_copy_implementations`, to warn
you if a non-generic public type has been added that could have
implemented `Copy` but didn't.
For convenience, you may *temporarily* opt out of this behavior by using
`#![feature(opt_out_copy)]`. Note though that this feature gate will never be
accepted and will be removed by the time that 1.0 is released, so you should
transition your code away from using it.
This breaks code like:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
Change this code to:
#[deriving(Show)]
struct Point2D {
x: int,
y: int,
}
impl Copy for Point2D {}
fn main() {
let mypoint = Point2D {
x: 1,
y: 1,
};
let otherpoint = mypoint;
println!("{}{}", mypoint, otherpoint);
}
This is the backwards-incompatible part of #13231.
Part of RFC #3.
[breaking-change]
The test harness will make sure that the panic message contains the
specified string. This is useful to help make `#[should_fail]` tests a
bit less brittle by decreasing the chance that the test isn't
"accidentally" passing due to a panic occurring earlier than expected.
The behavior is in some ways similar to JUnit's `expected` feature:
`@Test(expected=NullPointerException.class)`.
Without the message assertion, this test would pass even though it's not
actually reaching the intended part of the code:
```rust
#[test]
#[should_fail(message = "out of bounds")]
fn test_oob_array_access() {
let idx: uint = from_str("13o").unwrap(); // oops, this will panic
[1i32, 2, 3][idx];
}
```
The test harness will make sure that the panic message contains the
specified string. This is useful to help make `#[should_fail]` tests a
bit less brittle by decreasing the chance that the test isn't
"accidentally" passing due to a panic occurring earlier than expected.
The behavior is in some ways similar to JUnit's `expected` feature:
`@Test(expected=NullPointerException.class)`.
Without the message assertion, this test would pass even though it's not
actually reaching the intended part of the code:
```rust
#[test]
#[should_fail(message = "out of bounds")]
fn test_oob_array_access() {
let idx: uint = from_str("13o").unwrap(); // oops, this will panic
[1i32, 2, 3][idx];
}
```
This fixes a long-time irritant of mine. Inserting tabs causes M-x next-error to not work in emacs and seems to serve relatively little purpose in improving overall readability.
r? @brson
This change applies the conventions to unwrap listed in [RFC 430][rfc] to rename
non-failing `unwrap` methods to `into_inner`. This is a breaking change, but all
`unwrap` methods are retained as `#[deprecated]` for the near future. To update
code rename `unwrap` method calls to `into_inner`.
[rfc]: https://github.com/rust-lang/rfcs/pull/430
[breaking-change]
Closes#13159
cc #19091
This commit applies the stabilization of std::fmt as outlined in [RFC 380][rfc].
There are a number of breaking changes as a part of this commit which will need
to be handled to migrated old code:
* A number of formatting traits have been removed: String, Bool, Char, Unsigned,
Signed, and Float. It is recommended to instead use Show wherever possible or
to use adaptor structs to implement other methods of formatting.
* The format specifier for Boolean has changed from `t` to `b`.
* The enum `FormatError` has been renamed to `Error` as well as becoming a unit
struct instead of an enum. The `WriteError` variant no longer exists.
* The `format_args_method!` macro has been removed with no replacement. Alter
code to use the `format_args!` macro instead.
* The public fields of a `Formatter` have become read-only with no replacement.
Use a new formatting string to alter the formatting flags in combination with
the `write!` macro. The fields can be accessed through accessor methods on the
`Formatter` structure.
Other than these breaking changes, the contents of std::fmt should now also all
contain stability markers. Most of them are still #[unstable] or #[experimental]
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0380-stabilize-std-fmt.md
[breaking-change]
Closes#18904
The trait has an obvious, sensible implementation directly on vectors so
the MemWriter wrapper is unnecessary. This will halt the trend towards
providing all of the vector methods on MemWriter along with eliminating
the noise caused by conversions between the two types. It also provides
the useful default Writer methods on Vec<u8>.
After the type is removed and code has been migrated, it would make
sense to add a new implementation of MemWriter with seeking support. The
simple use cases can be covered with vectors alone, and ones with the
need for seeks can use a new MemWriter implementation.
The trait has an obvious, sensible implementation directly on vectors so
the MemWriter wrapper is unnecessary. This will halt the trend towards
providing all of the vector methods on MemWriter along with eliminating
the noise caused by conversions between the two types. It also provides
the useful default Writer methods on Vec<u8>.
After the type is removed and code has been migrated, it would make
sense to add a new implementation of MemWriter with seeking support. The
simple use cases can be covered with vectors alone, and ones with the
need for seeks can use a new MemWriter implementation.
This breaks code that referred to variant names in the same namespace as
their enum. Reexport the variants in the old location or alter code to
refer to the new locations:
```
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
=>
```
pub use self::Foo::{A, B};
pub enum Foo {
A,
B
}
fn main() {
let a = A;
}
```
or
```
pub enum Foo {
A,
B
}
fn main() {
let a = Foo::A;
}
```
[breaking-change]
I found some occurrences of "failure" and "fails" in the documentation. I changed them to "panics" if it means a task panic. Otherwise I left it as is, or changed it to "errors" to clearly distinguish them.
Also, I made a minor fix that is breaking the layout of a module page. "Example" is shown in an irrelevant place from the following page: http://doc.rust-lang.org/std/os/index.html
This implements a considerable portion of rust-lang/rfcs#369 (tracked in #18640). Some interpretations had to be made in order to get this to work. The breaking changes are listed below:
[breaking-change]
- `core::num::{Num, Unsigned, Primitive}` have been deprecated and their re-exports removed from the `{std, core}::prelude`.
- `core::num::{Zero, One, Bounded}` have been deprecated. Use the static methods on `core::num::{Float, Int}` instead. There is no equivalent to `Zero::is_zero`. Use `(==)` with `{Float, Int}::zero` instead.
- `Signed::abs_sub` has been moved to `std::num::FloatMath`, and is no longer implemented for signed integers.
- `core::num::Signed` has been removed, and its methods have been moved to `core::num::Float` and a new trait, `core::num::SignedInt`. The methods now take the `self` parameter by value.
- `core::num::{Saturating, CheckedAdd, CheckedSub, CheckedMul, CheckedDiv}` have been removed, and their methods moved to `core::num::Int`. Their parameters are now taken by value. This means that
- `std::time::Duration` no longer implements `core::num::{Zero, CheckedAdd, CheckedSub}` instead defining the required methods non-polymorphically.
- `core::num::{zero, one, abs, signum}` have been deprecated. Use their respective methods instead.
- The `core::num::{next_power_of_two, is_power_of_two, checked_next_power_of_two}` functions have been deprecated in favor of methods defined a new trait, `core::num::UnsignedInt`
- `core::iter::{AdditiveIterator, MultiplicativeIterator}` are now only implemented for the built-in numeric types.
- `core::iter::{range, range_inclusive, range_step, range_step_inclusive}` now require `core::num::Int` to be implemented for the type they a re parametrized over.
This commit deprecates the entire libtime library in favor of the
externally-provided libtime in the rust-lang organization. Users of the
`libtime` crate as-is today should add this to their Cargo manifests:
[dependencies.time]
git = "https://github.com/rust-lang/time"
To implement this transition, a new function `Duration::span` was added to the
`std::time::Duration` time. This function takes a closure and then returns the
duration of time it took that closure to execute. This interface will likely
improve with `FnOnce` unboxed closures as moving in and out will be a little
easier.
Due to the deprecation of the in-tree crate, this is a:
[breaking-change]
cc #18855, some of the conversions in the `src/test/bench` area may have been a
little nicer with that implemented
This commit deprecates the entire libtime library in favor of the
externally-provided libtime in the rust-lang organization. Users of the
`libtime` crate as-is today should add this to their Cargo manifests:
[dependencies.time]
git = "https://github.com/rust-lang/time"
To implement this transition, a new function `Duration::span` was added to the
`std::time::Duration` time. This function takes a closure and then returns the
duration of time it took that closure to execute. This interface will likely
improve with `FnOnce` unboxed closures as moving in and out will be a little
easier.
Due to the deprecation of the in-tree crate, this is a:
[breaking-change]
cc #18855, some of the conversions in the `src/test/bench` area may have been a
little nicer with that implemented
Throughout the docs, "failure" was replaced with "panics" if it means a
task panic. Otherwise, it remained as is, or changed to "errors" to
clearly differentiate it from a task panic.