This change is an implementation of [RFC 69][rfc] which adds a third kind of
global to the language, `const`. This global is most similar to what the old
`static` was, and if you're unsure about what to use then you should use a
`const`.
The semantics of these three kinds of globals are:
* A `const` does not represent a memory location, but only a value. Constants
are translated as rvalues, which means that their values are directly inlined
at usage location (similar to a #define in C/C++). Constant values are, well,
constant, and can not be modified. Any "modification" is actually a
modification to a local value on the stack rather than the actual constant
itself.
Almost all values are allowed inside constants, whether they have interior
mutability or not. There are a few minor restrictions listed in the RFC, but
they should in general not come up too often.
* A `static` now always represents a memory location (unconditionally). Any
references to the same `static` are actually a reference to the same memory
location. Only values whose types ascribe to `Sync` are allowed in a `static`.
This restriction is in place because many threads may access a `static`
concurrently. Lifting this restriction (and allowing unsafe access) is a
future extension not implemented at this time.
* A `static mut` continues to always represent a memory location. All references
to a `static mut` continue to be `unsafe`.
This is a large breaking change, and many programs will need to be updated
accordingly. A summary of the breaking changes is:
* Statics may no longer be used in patterns. Statics now always represent a
memory location, which can sometimes be modified. To fix code, repurpose the
matched-on-`static` to a `const`.
static FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
change this code to:
const FOO: uint = 4;
match n {
FOO => { /* ... */ }
_ => { /* ... */ }
}
* Statics may no longer refer to other statics by value. Due to statics being
able to change at runtime, allowing them to reference one another could
possibly lead to confusing semantics. If you are in this situation, use a
constant initializer instead. Note, however, that statics may reference other
statics by address, however.
* Statics may no longer be used in constant expressions, such as array lengths.
This is due to the same restrictions as listed above. Use a `const` instead.
[breaking-change]
[rfc]: https://github.com/rust-lang/rfcs/pull/246
Modify ast::ExprMatch to include a new value of type ast::MatchSource,
making it easy to tell whether the match was written literally or
produced via desugaring. This allows us to customize error messages
appropriately.
in favor of `move`.
This breaks code that used `move` as an identifier, because it is now a
keyword. Change such identifiers to not use the keyword `move`.
Additionally, this breaks code that was counting on by-value or
by-reference capture semantics for unboxed closures (behind the feature
gate). Change `ref |:|` to `|:|` and `|:|` to `move |:|`.
Part of RFC #63; part of issue #12831.
[breaking-change]
Change to resolve and update compiler and libs for uses.
[breaking-change]
Enum variants are now in both the value and type namespaces. This means that
if you have a variant with the same name as a type in scope in a module, you
will get a name clash and thus an error. The solution is to either rename the
type or the variant.
Part of issue #16640. I am leaving this issue open to handle parsing of
higher-rank lifetimes in traits.
This change breaks code that used unboxed closures:
* Instead of `F:|&: int| -> int`, write `F:Fn(int) -> int`.
* Instead of `F:|&mut: int| -> int`, write `F:FnMut(int) -> int`.
* Instead of `F:|: int| -> int`, write `F:FnOnce(int) -> int`.
[breaking-change]
The implementation essentially desugars during type collection and AST
type conversion time into the parameter scheme we have now. Only fully
qualified names--e.g. `<T as Foo>::Bar`--are supported.
This allows code to access the fields of tuples and tuple structs:
let x = (1i, 2i);
assert_eq!(x.1, 2);
struct Point(int, int);
let origin = Point(0, 0);
assert_eq!(origin.0, 0);
assert_eq!(origin.1, 0);
instead of prefix `..`.
This breaks code that looked like:
match foo {
[ first, ..middle, last ] => { ... }
}
Change this code to:
match foo {
[ first, middle.., last ] => { ... }
}
RFC #55.
Closes#16967.
[breaking-change]
Different Identifiers and Names can have identical textual representations, but different internal representations, due to the macro hygiene machinery (syntax contexts and gensyms). This provides a way to see these internals by compiling with `--pretty expanded,hygiene`.
This is useful for debugging & hacking on macros (e.g. diagnosing https://github.com/rust-lang/rust/issues/15750/https://github.com/rust-lang/rust/issues/15962 likely would've been faster with this functionality).
E.g.
```rust
#![feature(macro_rules)]
// minimal junk
#![no_std]
macro_rules! foo {
($x: ident) => { y + $x }
}
fn bar() {
foo!(x)
}
```
```rust
#![feature(macro_rules)]
// minimal junk
#![no_std]
fn bar /* 61#0 */() { y /* 60#2 */ + x /* 58#3 */ }
```
`--pretty expanded,hygiene` is helpful with debugging macro issues,
since two identifiers/names can be textually the same, but different
internally (resulting in weird "undefined variable" errors).
For review. Not sure about the link_attrs stuff. Will work on converting all the tests.
extern crate "foobar" as foo;
extern crate foobar as foo;
Implements remaining part of RFC #47.
Addresses issue #16461.
Removed link_attrs from rust.md, they don't appear to be supported by
the parser.
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
Implements remaining part of RFC #47.
Addresses issue #16461.
Removed link_attrs from rust.md, they don't appear to be supported by
the parser.
Changed all the tests to use the new extern crate syntax
Change pretty printer to use 'as' syntax
Stop read+write expressions from expanding into two occurences
in the AST. Add a bool to indicate whether an operand in output
position if read+write or not.
Fixes#14936
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
r? @nikomatsakis (or whoever)
These `where` clauses are accepted everywhere generics are currently
accepted and desugar during type collection to the type parameter bounds
we have today.
A new keyword, `where`, has been added. Therefore, this is a breaking
change. Change uses of `where` to other identifiers.
[breaking-change]
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
by-reference upvars.
This partially implements RFC 38. A snapshot will be needed to turn this
on, because stage0 cannot yet parse the keyword.
Part of #12831.
r? @alexcrichton
by-reference upvars.
This partially implements RFC 38. A snapshot will be needed to turn this
on, because stage0 cannot yet parse the keyword.
Part of #12381.
This adds support to `quote_expr!` and friends for round-trip hygienic
preservation of Ident.
Here are the pieces of the puzzle:
* adding a method for encoding Ident for re-reading into token tree.
* Support for reading such encoded Idents in the lexer. Note that one
must peek ahead for MOD_SEP after scan_embedded_hygienic_ident.
* To ensure that encoded Idents are only read when we are in the midst
of expanding a `quote_expr` or similar, added a
`read_embedded_ident` flag on `StringReader`.
* pprust support for encoding Ident's as (uint,uint) pairs (for hygiene).
meaning `'b outlives 'a`. Syntax currently does nothing but is needed for full
fix to #5763. To use this syntax, the issue_5763_bootstrap feature guard is
required.
The `type_overflow` lint, doesn't catch the overflow for `i64` because
the overflow happens earlier in the parse phase when the `u64` as biggest
possible int gets casted to `i64` , without checking the for overflows.
We can't lint in the parse phase, so a refactoring of the `LitInt` type
was necessary.
The types `LitInt`, `LitUint` and `LitIntUnsuffixed` where merged to one
type `LitInt` which stores it's value as `u64`. An additional parameter was
added which indicate the signedness of the type and the sign of the value.
This eliminates the last vestige of the `~` syntax.
Instead of `~self`, write `self: Box<TypeOfSelf>`; instead of `mut
~self`, write `mut self: Box<TypeOfSelf>`, replacing `TypeOfSelf` with
the self-type parameter as specified in the implementation.
Closes#13885.
[breaking-change]
except where trait objects are involved.
Part of issue #15349, though I'm leaving it open for trait objects.
Cross borrowing for trait objects remains because it is needed until we
have DST.
This will break code like:
fn foo(x: &int) { ... }
let a = box 3i;
foo(a);
Change this code to:
fn foo(x: &int) { ... }
let a = box 3i;
foo(&*a);
[breaking-change]
This makes two changes to region inference: (1) it allows region
inference to relate early-bound regions; and (2) it allows regions to be
related before variance runs. The former is needed because there is no
relation between the two regions before region substitution happens,
while the latter is needed because type collection has to run before
variance. We assume that, before variance is inferred, that lifetimes
are invariant. This is a conservative overapproximation.
This relates to #13885. This does not remove `~self` from the language
yet, however.
[breaking-change]