This PR introduces a `Reflect` marker trait which is a supertrait of `Any`. The idea is that `Reflect` is defined for all concrete types, but is not defined for type parameters unless there is a `T:Reflect` bound. This is intended to preserve the parametricity property. This allows the `Any` interface to be stabilized without committing us to unbounded reflection that is not easily detectable by the caller.
The implementation of `Reflect` relies on an experimental variant of OIBIT. This variant behaves differently for objects, since it requires that all types exposed as part of the object's *interface* are `Reflect`, but isn't concerned about other types that may be closed over. In other words, you don't have to write `Foo+Reflect` in order for `Foo: Reflect` to hold (where `Foo` is a trait).
Given that `Any` is slated to stabilization and hence that we are committed to some form of reflection, the goal of this PR is to leave our options open with respect to parametricity. I see the options for full stabilization as follows (I think an RFC would be an appropriate way to confirm whichever of these three routes we take):
1. We make `Reflect` a lang-item.
2. We stabilize some version of the OIBIT variation I implemented as a general mechanism that may be appropriate for other use cases.
3. We give up on preserving parametricity here and just have `impl<T> Reflect for T` instead. In that case, `Reflect` is a harmless but not especially useful trait going forward.
cc @aturon
cc @alexcrichton
cc @glaebhoerl (this is more-or-less your proposal, as I understood it)
cc @reem (this is more-or-less what we discussed on IRC at some point)
cc @FlaPer87 (vaguely pertains to OIBIT)
The primary motivation here is to sidestep #19032 -- for a time, I thought that we should improve coherence or otherwise extend the language, but I now think that any such changes will require more time to bake. In the meantime, inheritance amongst the fn traits is both logically correct *and* a simple solution to that obstacle. This change introduces inheritance and modifies the compiler so that it can properly generate impls for closures and fns.
Things enabled by this PR (but not included in this PR):
1. An impl of `FnMut` for `&mut F` where `F : FnMut` (https://github.com/rust-lang/rust/issues/23015).
2. A better version of `Thunk` I've been calling `FnBox`.
I did not include either of these in the PR because:
1. Adding the impls in 1 currently induces a coherence conflict with the pattern trait. This is interesting and merits some discussion.
2. `FnBox` deserves to be a PR of its own.
The main downside to this design is (a) the need to write impls by hand; (b) the possibility of implementing `FnMut` with different semantics from `Fn`, etc. Point (a) is minor -- in particular, it does not affect normal closure usage -- and could be addressed in the future in many ways (better defaults; convenient macros; specialization; etc). Point (b) is unfortunate but "just a bug" from my POV, and certainly not unique to these traits (c.f. Copy/Clone, PartialEq/Eq, etc). (Until we lift the feature-gate on implementing the Fn traits, in any case, there is room to correct both of these if we find a nice way.)
Note that I believe this change is reversible in the future if we decide on another course of action, due to the feature gate on implementing the `Fn` traits, though I do not (currently) think we should reverse it.
Fixes#18835.
r? @nrc
This is a [breaking-change]. When indexing a generic map (hashmap, etc) using the `[]` operator, it is now necessary to borrow explicitly, so change `map[key]` to `map[&key]` (consistent with the `get` routine). However, indexing of string-valued maps with constant strings can now be written `map["abc"]`.
r? @japaric
cc @aturon @Gankro
This commit:
* Introduces `std::convert`, providing an implementation of
RFC 529.
* Deprecates the `AsPath`, `AsOsStr`, and `IntoBytes` traits, all
in favor of the corresponding generic conversion traits.
Consequently, various IO APIs now take `AsRef<Path>` rather than
`AsPath`, and so on. Since the types provided by `std` implement both
traits, this should cause relatively little breakage.
* Deprecates many `from_foo` constructors in favor of `from`.
* Changes `PathBuf::new` to take no argument (creating an empty buffer,
as per convention). The previous behavior is now available as
`PathBuf::from`.
* De-stabilizes `IntoCow`. It's not clear whether we need this separate trait.
Closes#22751Closes#14433
[breaking-change]
impls.
This requires:
1. modifying trait selection a bit so that when we synthesize impls for
fn pointers and closures;
2. adding code to trans so that we can synthesize a `FnMut`/`FnOnce`
impl for a `Fn` closure and so forth.
us to construct trait-references and do other things without forcing a
full evaluation of the supertraits. One downside of this scheme is that
we must invoke `ensure_super_predicates` before using any construct that
might require knowing about the super-predicates.
type-outlives works for closure types so that it ensures that all upvars
outlive the region in question. This gives the same guarantees but
without introducing artificial regions (and gives better error messages
to boot).
Two changes:
1. Make traits with assoc types invariant w/r/t their inputs.
2. Fully normalize parameter environments, including any region variables (which were being overlooked).
The former supports the latter, but also just seems like a reasonably good idea.
Fixes#21750
cc @edwardw
r? @pnkfelix
RFC 817 is not yet accepted, but I wanted to put this code up so people can see how it works. And to be ready lest it should be accepted.
cc rust-lang/rfcs#817
This is one more step towards completing #13231
This series of commits add support for default trait implementations. The changes in this PR don't break existing code and they are expected to preserve the existing behavior in the compiler as far as built-in bounds checks go.
The PR adds negative implementations of `Send`/`Sync` for some types and it removes the special cases for `Send`/`Sync` during the trait obligations checks. That is, it now fully relies on the traits check rather than lang items.
Once this patch lands and a new snapshot is created, it'll be possible to add default impls for `Send` and `Sync` and remove entirely the use of `BuiltinBound::{BoundSend,BoundSync}` for positive implementations as well.
This PR also removes the restriction on negative implementations. That is, it is now possible to add negative implementations for traits other than `Send`/`Sync`
- Don't allow multiple default trait implementations
- Allow positive trait implementations just for structs and enums when
there's a default implementation for such trait.
The big change here is that we update the object-safety rules to prohibit references to `Self` in the supertrait listing. See #22040 for the motivation. The other change is to handle the interaction of defaults that reference `Self` and object types (where `Self` is erased). We force users to give an explicit type in that scenario.
r? @aturon
Take 2. This PR includes a bunch of refactoring that was part of an experimental branch implementing [implied bounds]. That particular idea isn't ready to go yet, but the refactoring proved useful for fixing #22246. The implied bounds branch also exposed #22110 so a simple fix for that is included here. I still think some more refactoring would be a good idea here -- in particular I think most of the code in wf.rs is kind of duplicating the logic in implicator and should go, but I decided to post this PR and call it a day before diving into that. I'll write a bit more details about the solutions I adopted in the various bugs. I patched the two issues I was concerned about, which was the handling of supertraits and HRTB (the latter turned out to be fine, so I added a comment explaining why.)
r? @pnkfelix (for now, anyway)
cc @aturon
[implied bounds]: http://smallcultfollowing.com/babysteps/blog/2014/07/06/implied-bounds/
This overlaps with #22276 (I left make check running overnight) but covers a number of additional cases and has a few rewrites where the clones are not even necessary.
This also implements `RandomAccessIterator` for `iter::Cloned`
cc @steveklabnik, you may want to glance at this before #22281 gets the bors treatment
into variance inference; fix various bugs in variance inference
so that it considers the correct set of constraints; modify infer to
consider the results of variance inference for type arguments.
Previously Send was defined as `trait Send: 'static {}`. As detailed in
https://github.com/rust-lang/rfcs/pull/458, the `'static` bound is not
actually necessary for safety, we can use lifetimes to enforce that more
flexibly.
`unsafe` code that was previously relying on `Send` to insert a
`'static` bound now may allow incorrect patterns, and so should be
audited (a quick way to ensure safety immediately and postpone the audit
is to add an explicit `'static` bound to any uses of the `Send` type).
cc #22251.
This is super black magic internals at the moment, but having it
somewhere semi-public seems good. The current versions weren't being
rendered, and they'll be useful for some people.
Fixes#21281
r? @nikomatsakis @kmcallister
When projecting associate types for a trait's default methods, the
trait itself was added to the predicate candidate list twice: one from
parameter environment, the other from trait definition. Then the
duplicates were deemed as code ambiguity and the compiler rejected the
code. Simply checking and dropping the duplicates solves the issue.
Closes#22036
This is super black magic internals at the moment, but having it
somewhere semi-public seems good. The current versions weren't being
rendered, and they'll be useful for some people.
Fixes#21281
Simplify cache selection by just using the local cache whenever there
are any where-clauses at all. This seems to be the simplest possible
rule and will (hopefully!) put an end to these annoying "cache leak"
bugs. Fixes#22019.
r? @aturon
are any where-clauses at all. This seems to be the simplest possible
rule and will (hopefully!) put an end to these annoying "cache leak"
bugs. Fixes#22019.
This was particularly helpful in the time just after OIBIT's
implementation to make sure things that were supposed to be Copy
continued to be, but it's now creates a lot of noise for types that
intentionally don't want to be Copy.
r? @alexcrichton
This was particularly helpful in the time just after OIBIT's
implementation to make sure things that were supposed to be Copy
continued to be, but it's now creates a lot of noise for types that
intentionally don't want to be Copy.
possible. There is some amount of duplication as a result (similar to
select) -- I am not happy about this but not sure how to fix it
without deeper rewrites.
Update the coherence rules to "covered first" -- the first type parameter to contain either a local type or a type parameter must contain only covered type parameters.
cc #19470.
Fixes#20974.
Fixes#20749.
r? @aturon
the compiler that assumed two input types to assume two ouputs; we also have to teach `project.rs`
to project `Output` from the unboxed closure and fn traits.
This commit is an implementation of [RFC 565][rfc] which is a stabilization of
the `std::fmt` module and the implementations of various formatting traits.
Specifically, the following changes were performed:
[rfc]: https://github.com/rust-lang/rfcs/blob/master/text/0565-show-string-guidelines.md
* The `Show` trait is now deprecated, it was renamed to `Debug`
* The `String` trait is now deprecated, it was renamed to `Display`
* Many `Debug` and `Display` implementations were audited in accordance with the
RFC and audited implementations now have the `#[stable]` attribute
* Integers and floats no longer print a suffix
* Smart pointers no longer print details that they are a smart pointer
* Paths with `Debug` are now quoted and escape characters
* The `unwrap` methods on `Result` now require `Display` instead of `Debug`
* The `Error` trait no longer has a `detail` method and now requires that
`Display` must be implemented. With the loss of `String`, this has moved into
libcore.
* `impl<E: Error> FromError<E> for Box<Error>` now exists
* `derive(Show)` has been renamed to `derive(Debug)`. This is not currently
warned about due to warnings being emitted on stage1+
While backwards compatibility is attempted to be maintained with a blanket
implementation of `Display` for the old `String` trait (and the same for
`Show`/`Debug`) this is still a breaking change due to primitives no longer
implementing `String` as well as modifications such as `unwrap` and the `Error`
trait. Most code is fairly straightforward to update with a rename or tweaks of
method calls.
[breaking-change]
Closes#21436
Refactor compare_impl_method into its own file. Modify the
code to stop comparing individual parameter bounds.
Instead we now use the predicates list attached to the trait
and implementation generics. This ensures consistency even
when bounds are declared in different places (i.e on
a parameter vs. in a where clause).
There's been some debate over the precise form that these APIs should take, and
they've undergone some changes recently, so these APIs are going to be left
unstable for now to be fleshed out during the next release cycle.
fmt::Show is for debugging, and can and should be implemented for
all public types. This trait is used with `{:?}` syntax. There still
exists #[derive(Show)].
fmt::String is for types that faithfully be represented as a String.
Because of this, there is no way to derive fmt::String, all
implementations must be purposeful. It is used by the default format
syntax, `{}`.
This will break most instances of `{}`, since that now requires the type
to impl fmt::String. In most cases, replacing `{}` with `{:?}` is the
correct fix. Types that were being printed specifically for users should
receive a fmt::String implementation to fix this.
Part of #20013
[breaking-change]
Treat associated types the same as type parameters when it comes to region bounding. Fixes#20303.
Strictly speaking, this is a [breaking-change] (if you are using
associated types). You are no longer free to wantonly violate the type
system rules by closing associated types into objects without any form
of region bound. Instead you should add region bounds like `T::X :
'a`, just as you would with a normal type parameter.
r? @aturon
- the self type includes some local type; and,
- type parameters in the self type must be constrained by a local type.
A type parameter is called *constrained* if it appears in some type-parameter of a local type.
Here are some examples that are accepted. In all of these examples, I
assume that `Foo` is a trait defined in another crate. If `Foo` were
defined in the local crate, then all the examples would be legal.
- `impl Foo for LocalType`
- `impl<T> Foo<T> for LocalType` -- T does not appear in Self, so it is OK
- `impl<T> Foo<T> for LocalType<T>` -- T here is constrained by LocalType
- `impl<T> Foo<T> for (LocalType<T>, T)` -- T here is constrained by LocalType
Here are some illegal examples (again, these examples assume that
`Foo` is not local to the current crate):
- `impl Foo for int` -- the Self type is not local
- `impl<T> Foo for T` -- T appears in Self unconstrained by a local type
- `impl<T> Foo for (LocalType, T)` -- T appears in Self unconstrained by a local type
This is a [breaking-change]. For the time being, you can opt out of
the new rules by placing `#[old_orphan_check]` on the trait (and
enabling the feature gate where the trait is defined). Longer term,
you should restructure your traits to avoid the problem. Usually this
means changing the order of parameters so that the "central" type
parameter is in the `Self` position.
As an example of that refactoring, consider the `BorrowFrom` trait:
```rust
pub trait BorrowFrom<Sized? Owned> for Sized? {
fn borrow_from(owned: &Owned) -> &Self;
}
```
As defined, this trait is commonly implemented for custom pointer
types, such as `Arc`. Those impls follow the pattern:
```rust
impl<T> BorrowFrom<Arc<T>> for T {...}
```
Unfortunately, this impl is illegal because the self type `T` is not
local to the current crate. Therefore, we are going to change the order of the parameters,
so that `BorrowFrom` becomes `Borrow`:
```rust
pub trait Borrow<Sized? Borrowed> for Sized? {
fn borrow_from(owned: &Self) -> &Borrowed;
}
```
Now the `Arc` impl is written:
```rust
impl<T> Borrow<T> for Arc<T> { ... }
```
This impl is legal because the self type (`Arc<T>`) is local.
closes#20486closes#20474closes#20441
[breaking-change]
The `Index[Mut]` traits now have one less input parameter, as the return type of the indexing operation is an associated type. This breaks all existing implementations.
---
binop traits (`Add`, `Sub`, etc) now have an associated type for their return type. Also, the RHS input parameter now defaults to `Self` (except for the `Shl` and `Shr` traits). For example, the `Add` trait now looks like this:
``` rust
trait Add<Rhs=Self> {
type Output;
fn add(self, Rhs) -> Self::Output;
}
```
The `Neg` and `Not` traits now also have an associated type for their return type.
This breaks all existing implementations of these traits.
---
Affected traits:
- `Iterator { type Item }`
- `IteratorExt` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `DoubleEndedIterator` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `DoubleEndedIteratorExt` no input/output types, uses `<Self as Iterator>::Item` in its methods
- `RandomAccessIterator` no input/output types
- `ExactSizeIterator` no input/output types, uses `<Self as Iterator>::Item` in its methods
This breaks all the implementations of these traits.
`UnboxedClosureTyper`. This requires adding a `tcx` field to
`ParameterEnvironment` but generally simplifies everything since we
only need to pass along an `UnboxedClosureTyper` or `Typer`.
which should always result in an error.
NB. Some of the hunks in this commit rely on a later commit which adds
`tcx` into `param_env` and modifies `ParameterEnvironment` to
implement `Typer`.
check it more easily; also extend object safety to cover sized types
as well as static methods. This makes it sufficient so that we can
always ensure that `Foo : Foo` holds for any trait `Foo`.
This is a [breaking-change]. The new rules require that, for an impl of a trait defined
in some other crate, two conditions must hold:
1. Some type must be local.
2. Every type parameter must appear "under" some local type.
Here are some examples that are legal:
```rust
struct MyStruct<T> { ... }
// Here `T` appears "under' `MyStruct`.
impl<T> Clone for MyStruct<T> { }
// Here `T` appears "under' `MyStruct` as well. Note that it also appears
// elsewhere.
impl<T> Iterator<T> for MyStruct<T> { }
```
Here is an illegal example:
```rust
// Here `U` does not appear "under" `MyStruct` or any other local type.
// We call `U` "uncovered".
impl<T,U> Iterator<U> for MyStruct<T> { }
```
There are a couple of ways to rewrite this last example so that it is
legal:
1. In some cases, the uncovered type parameter (here, `U`) should be converted
into an associated type. This is however a non-local change that requires access
to the original trait. Also, associated types are not fully baked.
2. Add `U` as a type parameter of `MyStruct`:
```rust
struct MyStruct<T,U> { ... }
impl<T,U> Iterator<U> for MyStruct<T,U> { }
```
3. Create a newtype wrapper for `U`
```rust
impl<T,U> Iterator<Wrapper<U>> for MyStruct<T,U> { }
```
Because associated types are not fully baked, which in the case of the
`Hash` trait makes adhering to this rule impossible, you can
temporarily disable this rule in your crate by using
`#![feature(old_orphan_check)]`. Note that the `old_orphan_check`
feature will be removed before 1.0 is released.
is still probably wrong since it fails to incorporate the ambiguity
resolution measures that `select` uses. Also, made more complicated by
the fact that trait object types do not impl their own traits yet.