Replace some operators in libcore with their short-circuiting equivalents
In libcore there are a few occurrences of bitwise operators used in boolean expressions instead of their short-circuiting equivalents. This makes it harder to perform some kinds of source code analysis over libcore, for example [MC/DC] code coverage (a requirement in safety-critical environments).
This PR aims to remove as many bitwise operators in boolean expressions from libcore as possible, without any performance regression and without other changes. This means not all bitwise operators are removed, only the ones that don't have any difference with their short-circuiting counterparts. This already simplifies achieving MC/DC coverage, and the other functions can be changed in future PRs.
The PR is best reviewed commit-by-commit, and each commit has the resulting assembly in the message.
## Checked integer methods
These methods recently switched to bitwise operators in PRs https://github.com/rust-lang/rust/pull/89459 and https://github.com/rust-lang/rust/pull/89351. I confirmed bitwise operators are needed in most of the functions, except these two:
* `{integer}::checked_div` ([Godbolt link (nightly)](https://rust.godbolt.org/z/17efh5jPc))
* `{integer}::checked_rem` ([Godbolt link (nightly)](https://rust.godbolt.org/z/85qGWc94K))
`@tspiteri` already mentioned this was the case in https://github.com/rust-lang/rust/pull/89459#issuecomment-932728384, but opted to also switch those two to bitwise operators for consistency. As that makes MC/DC analysis harder this PR proposes switching those two back to short-circuiting operators.
## `{unsigned_ints}::carrying_add`
[Godbolt link (1.56.0)](https://rust.godbolt.org/z/vG9vx8x48)
In this instance replacing the `|` with `||` produces the exact same assembly when optimizations are enabled, so switching to the short-circuiting operator shouldn't have any impact.
## `{unsigned_ints}::borrowing_sub`
[Godbolt link (1.56.0)](https://rust.godbolt.org/z/asEfKaGE4)
In this instance replacing the `|` with `||` produces the exact same assembly when optimizations are enabled, so switching to the short-circuiting operator shouldn't have any impact.
## String UTF-8 validation
[Godbolt link (1.56.0)](https://rust.godbolt.org/z/a4rEbTvvx)
In this instance replacing the `|` with `||` produces practically the same assembly, with the two operands for the "or" swapped:
```asm
; Old
mov rax, qword ptr [rdi + rdx + 8]
or rax, qword ptr [rdi + rdx]
test rax, r9
je .LBB0_7
; New
mov rax, qword ptr [rdi + rdx]
or rax, qword ptr [rdi + rdx + 8]
test rax, r8
je .LBB0_7
```
[MC/DC]: https://en.wikipedia.org/wiki/Modified_condition/decision_coverage
Revert "Add rustc lint, warning when iterating over hashmaps"
Fixes perf regressions introduced in https://github.com/rust-lang/rust/pull/90235 by temporarily reverting the relevant PR.
Remove extra lines in examples for `Duration::try_from_secs_*`
None of the other examples have extra lines below the `#![feature(...)]` statements, so I thought it appropriate that these examples shouldn't either.
Rollup of 5 pull requests
Successful merges:
- #90239 (Consistent big O notation in map.rs)
- #90267 (fix: inner attribute followed by outer attribute causing ICE)
- #90288 (Add hint for people missing `TryFrom`, `TryInto`, `FromIterator` import pre-2021)
- #90304 (Add regression test for #75961)
- #90344 (Add tracking issue number to const_cstr_unchecked)
Failed merges:
r? `@ghost`
`@rustbot` modify labels: rollup
Add tracking issue number to const_cstr_unchecked
Also created a tracking issue, see #90343.
I think it makes sense to stabilize this somewhat soon considering abuse of `transmute` to have this feature in constants, see https://crates.io/crates/cstr for an example. Code can be rewritten to use `mem::transmute` to work on stable.
Clean up special function const checks
Mark them as const and `#[rustc_do_not_const_check]` instead of hard-coding them in const-eval checks.
r? `@oli-obk`
`@rustbot` label A-const-eval T-compiler
Using short-circuit operators makes it easier to perform some kinds of
source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86 assembly is the same
between the old and new versions:
```
xor eax, eax
test esi, esi
je .LBB0_1
cmp edi, -2147483648
jne .LBB0_4
cmp esi, -1
jne .LBB0_4
ret
.LBB0_1:
ret
.LBB0_4:
mov eax, edi
cdq
idiv esi
mov eax, 1
ret
```
Using short-circuit operators makes it easier to perform some kinds of
source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86 assembly is the same
between the old and new versions:
```
xor eax, eax
test esi, esi
je .LBB0_1
cmp edi, -2147483648
jne .LBB0_4
cmp esi, -1
jne .LBB0_4
ret
.LBB0_1:
ret
.LBB0_4:
mov eax, edi
cdq
idiv esi
mov edx, eax
mov eax, 1
ret
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is
equivalent between the old and new versions.
Old assembly of that condition:
```
mov rax, qword ptr [rdi + rdx + 8]
or rax, qword ptr [rdi + rdx]
test rax, r9
je .LBB0_7
```
New assembly of that condition:
```
mov rax, qword ptr [rdi + rdx]
or rax, qword ptr [rdi + rdx + 8]
test rax, r8
je .LBB0_7
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is the same
between the old and new versions:
```
mov eax, edi
add dl, -1
sbb eax, esi
setb dl
ret
```
Using short-circuiting operators makes it easier to perform some kinds
of source code analysis, like MC/DC code coverage (a requirement in
safety-critical environments). The optimized x86_64 assembly is the same
between the old and new versions:
```
mov eax, edi
add dl, -1
adc eax, esi
setb dl
ret
```
Remove fNN::lerp
Lerp is [surprisingly complex with multiple tradeoffs depending on what guarantees you want to provide](https://github.com/rust-lang/rust/issues/86269#issuecomment-869108301) (and what you're willing to drop for raw speed), so we don't have consensus on what implementation to use, let alone what signature - `t.lerp(a, b)` nicely puts `a, b` together, but makes dispatch to lerp custom types with the same signature basically impossible, and major ecosystem crates (e.g. nalgebra, glium) use `a.lerp(b, t)`, which is easily confusable. It was suggested to maybe provide a `Lerp<T>` trait and `t.lerp([a, b])`, which _could_ be implemented by downstream math libraries for their types, but also significantly raises the bar from a simple fNN method to a full trait, and does nothing to solve the implementation question. (It also raises the question of whether we'd support higher-order bezier interpolation.)
The only consensus we have is the lack of consensus, and the [general temperature](https://github.com/rust-lang/rust/issues/86269#issuecomment-951347135) is that we should just remove this method (giving the method space back to 3rd party libs) and revisit this if (and likely only if) IEEE adds lerp to their specification.
If people want a lerp, they're _probably_ already using (or writing) a math support library, which provides a lerp function for its custom math types and can provide the same lerp implementation for the primitive types via an extension trait.
See also [previous Zulip discussion](https://rust-lang.zulipchat.com/#narrow/stream/219381-t-libs/topic/lerp.20API.20design)
cc ``@clarfonthey`` (original PR author), ``@m-ou-se`` (original r+), ``@scottmcm`` (last voice in tracking issue, prompted me to post this)
Closes#86269 (removed)
Fix copy-paste error in String::as_mut_vec() docs
Did not expect the comments to be perfectly justified... can't wait to be told to change it to `Vec<u8>`, which destroys the justification 😼
Fix and extent ControlFlow `traverse_inorder` example
Fix and extent ControlFlow `traverse_inorder` example
1. The existing example compiles on its own, but any usage fails to be monomorphised and so doesn't compile. Fix that by using Fn trait instead of FnMut.
2. Added an example usage of `traverse_inorder` showing how we can terminate the traversal early.
Fixes#90063
1. The existing example compiles on its own, but any usage fails
to be monomorphised and so doesn't compile. Fix that by using
a mutable reference as an input argument.
2. Added an example usage of `traverse_inorder` showing how we
can terminate the traversal early.
Fixes#90063
Fix and extent ControlFlow `traverse_inorder` example
1. The existing example compiles on its own, but any usage fails to be monomorphised and so doesn't compile. Fix that by using Fn trait instead of FnMut.
2. Added an example usage of `traverse_inorder` showing how we can terminate the traversal early.
Fixes#90063
Make RSplit<T, P>: Clone not require T: Clone
This addresses a TODO comment. The behavior of `#[derive(Clone)]` *does* result in a `T: Clone` requirement. Playground example:
https://play.rust-lang.org/?version=stable&mode=debug&edition=2018&gist=a8b1a9581ff8893baf401d624a53d35b
Add a manual `Clone` implementation, mirroring `Split` and `SplitInclusive`.
`(R)?SplitN(Mut)?` don't have any `Clone` implementations, but I'll leave that for its own pull request.
Stabilise unix_process_wait_more, extra ExitStatusExt methods
This stabilises the feature `unix_process_wait_more`. Tracking issue #80695, FCP needed.
This was implemented in #79982 and merged in January.
Implement split_array and split_array_mut
This implements `[T]::split_array::<const N>() -> (&[T; N], &[T])` and `[T; N]::split_array::<const M>() -> (&[T; M], &[T])` and their mutable equivalents. These are another few “missing” array implementations now that const generics are a thing, similar to #74373, #75026, etc. Fixes#74674.
This implements `[T; N]::split_array` returning an array and a slice. Ultimately, this is probably not what we want, we would want the second return value to be an array of length N-M, which will likely be possible with future const generics enhancements. We need to implement the array method now though, to immediately shadow the slice method. This way, when the slice methods get stabilized, calling them on an array will not be automatic through coercion, so we won't have trouble stabilizing the array methods later (cf. into_iter debacle).
An unchecked version of `[T]::split_array` could also be added as in #76014. This would not be needed for `[T; N]::split_array` as that can be compile-time checked. Edit: actually, since split_at_unchecked is internal-only it could be changed to be split_array-only.
My change to use `Type::def_id()` (formerly `Type::def_id_full()`) in
more places caused some docs to show up that used to be missed by
rustdoc. Those docs contained unescaped square brackets, which triggered
linkcheck errors. This commit escapes the square brackets and adds this
particular instance to the linkcheck exception list.
Inline CStr::from_ptr
Inlining this function is valuable, as it allows LLVM to apply `strlen`-specific optimizations without having to enable LTO.
For instance, the following function:
```rust
pub fn f(p: *const c_char) -> Option<u8> {
unsafe { CStr::from_ptr(p) }.to_bytes().get(0).copied()
}
```
Looks like this if `CStr::from_ptr` is allowed to be inlined.
```asm
before:
push rax
call qword ptr [rip + std::ffi::c_str::CStr::from_ptr@GOTPCREL]
mov rcx, rax
cmp rdx, 1
sete dl
test rax, rax
sete al
or al, dl
jne .LBB1_2
mov dl, byte ptr [rcx]
.LBB1_2:
xor al, 1
pop rcx
ret
after:
mov dl, byte ptr [rdi]
test dl, dl
setne al
ret
```
Note that optimization turned this from O(N) to O(1) in terms of performance, as LLVM knows that it doesn't really need to call `strlen` to determine whether a string is empty or not.