Almost all languages provide some form of buffering of the stdout stream, and
this commit adds this feature for rust. A handle to stdout is lazily initialized
in the Task structure as a buffered owned Writer trait object. The buffer
behavior depends on where stdout is directed to. Like C, this line-buffers the
stream when the output goes to a terminal (flushes on newlines), and also like C
this uses a fixed-size buffer when output is not directed at a terminal.
We may decide the fixed-size buffering is overkill, but it certainly does reduce
write syscall counts when piping output elsewhere. This is a *huge* benefit to
any code using logging macros or the printing macros. Formatting emits calls to
`write` very frequently, and to have each of them backed by a write syscall was
very expensive.
In a local benchmark of printing 10000 lines of "what" to stdout, I got the
following timings:
when | terminal | redirected
----------|---------------|--------
before | 0.575s | 0.525s
after | 0.197s | 0.013s
C | 0.019s | 0.004s
I can also confirm that we're buffering the output appropriately in both
situtations. We're still far slower than C, but I believe much of that has to do
with the "homing" that all tasks due, we're still performing an order of
magnitude more write syscalls than C does.
Almost all languages provide some form of buffering of the stdout stream, and
this commit adds this feature for rust. A handle to stdout is lazily initialized
in the Task structure as a buffered owned Writer trait object. The buffer
behavior depends on where stdout is directed to. Like C, this line-buffers the
stream when the output goes to a terminal (flushes on newlines), and also like C
this uses a fixed-size buffer when output is not directed at a terminal.
We may decide the fixed-size buffering is overkill, but it certainly does reduce
write syscall counts when piping output elsewhere. This is a *huge* benefit to
any code using logging macros or the printing macros. Formatting emits calls to
`write` very frequently, and to have each of them backed by a write syscall was
very expensive.
In a local benchmark of printing 10000 lines of "what" to stdout, I got the
following timings:
when | terminal | redirected
----------------------------------
before | 0.575s | 0.525s
after | 0.197s | 0.013s
C | 0.019s | 0.004s
I can also confirm that we're buffering the output appropriately in both
situtations. We're still far slower than C, but I believe much of that has to do
with the "homing" that all tasks due, we're still performing an order of
magnitude more write syscalls than C does.
It's not guaranteed that there will always be an event loop to run, and this
implementation will serve as an incredibly basic one which does not provide any
I/O, but allows the scheduler to still run.
cc #9128
This is a peculiar function to require event loops to implement, and it's only
used in one spot during tests right now. Instead, a possibly more robust apis
for timers should be used rather than requiring all event loops to implement a
curious-looking function.
The PausibleIdleCallback must have some handle into the event loop, and because
struct destructors are run in order of top-to-bottom in order of fields, this
meant that the event loop was getting destroyed before the idle callback was
getting destroyed.
I can't confirm that this fixes a problem in how we use libuv, but it does
semantically fix a problem for usage with other event loops.
This adds constructors to pipe streams in the new runtime to take ownership of
file descriptors, and also fixes a few tests relating to the std::run changes
(new errors are raised on io_error and one test is xfail'd).
I was seeing a lot of weird behavior with stdin behaving as a tty, and it
doesn't really quite make sense, so instead this moves to using libuv's pipes
instead (which make more sense for stdin specifically).
This prevents piping input to rustc hanging forever.
The general idea is to remove conditions completely from I/O, so in the meantime
remove the read_error condition to mean the same thing as the io_error condition.
The isn't an ideal patch, and the comment why is in the code. Basically uvio
uses task::unkillable which touches the kill flag for a task, and if the task is
failing due to mismangement of the kill flag, then there will be serious
problems when the task tries to print that it's failing.
When uv's TTY I/O is used for the stdio streams, the file descriptors are put
into a non-blocking mode. This means that other concurrent writes to the same
stream can fail with EAGAIN or EWOULDBLOCK. By all I/O to event-loop I/O, we
avoid this error.
There is one location which cannot move, which is the runtime's dumb_println
function. This was implemented to handle the EAGAIN and EWOULDBLOCK errors and
simply retry again and again.
This involved changing a fair amount of code, rooted in how we access the local
IoFactory instance. I added a helper method to the rtio module to access the
optional local IoFactory. This is different than before in which it was assumed
that a local IoFactory was *always* present. Now, a separate io_error is raised
when an IoFactory is not present, yet I/O is requested.
This removes the PathLike trait associated with this "support module". This is
yet another "container of bytes" trait, so I didn't want to duplicate what
already exists throughout libstd. In actuality, we're going to pass of C strings
to the libuv APIs, so instead the arguments are now bound with the 'ToCStr'
trait instead.
Additionally, a layer of complexity was removed by immediately converting these
type-generic parameters into CStrings to get handed off to libuv apis.
We get a little more functionality from libuv for these kinds of streams (things
like terminal dimentions), and it also appears to more gracefully handle the
stream being a window. Beforehand, if you used stdio and hit CTRL+d on a
process, libuv would continually return 0-length successful reads instead of
interpreting that the stream was closed.
I was hoping to be able to write tests for this, but currently the testing
infrastructure doesn't allow tests with a stdin and a stdout, but this has been
manually tested! (not that it means much)
Removed unused import warning in std::mem and cleaned it up too
Removed is_true and is_false from std::bool
Removed freestanding functions in std::bool
- Adds the `Sample` and `IndependentSample` traits for generating numbers where there are parameters (e.g. a list of elements to draw from, or the mean/variance of a normal distribution). The former takes `&mut self` and the latter takes `&self` (this is the only difference).
- Adds proper `Normal` and `Exp`-onential distributions
- Adds `Range` which generates `[lo, hi)` generically & properly (via a new trait) replacing the incorrect behaviour of `Rng.gen_integer_range` (this has become `Rng.gen_range` for convenience, it's far more efficient to use `Range` itself)
- Move the `Weighted` struct from `std::rand` to `std::rand::distributions` & improve it
- optimisations and docs
- Use ["nothing up my sleeve numbers"](http://en.wikipedia.org/wiki/Nothing_up_my_sleeve_number) for the ISAAC tests.
- Replace the default implementation of `Rng.fill_bytes` with something that doesn't try to do bad things with `transmute` and vectors just for the sake of a little speed.
- Replace the transmutes used to seed the ISAAC RNGs with calls into `vec::raw`.
Slice transmutes are now (and, really, always were) dangerous, so we
avoid them and do the (only?) non-(undefined behaviour in C) pointer
cast: casting to *u8.