This commit uniforms the short title of modules provided by libstd,
in order to make their roles more explicit when glancing at the index.
Signed-off-by: Luca Bruno <lucab@debian.org>
* vec::raw::to_ptr is gone
* Pausible => Pausable
* Removing @
* Calling the main task "<main>"
* Removing unused imports
* Removing unused mut
* Bringing some libextra tests up to date
* Allowing compiletest to work at stage0
* Fixing the bootstrap-from-c rmake tests
* assert => rtassert in a few cases
* printing to stderr instead of stdout in fail!()
There was a race in the code previously where schedulers would *immediately*
shut down after spawning the main task (because the global task count would
still be 0). This fixes the logic by blocking the sched pool task in receving on
a port instead of spawning a task into the pool to receive on a port.
The modifications necessary were to have a "simple task" running by the time the
code is executing, but this is a simple enough thing to implement and I forsee
this being necessary to have implemented in the future anyway.
Note that this removes a number of run-pass tests which are exercising behavior
of the old runtime. This functionality no longer exists and is thoroughly tested
inside of libgreen and libnative. There isn't really the notion of "starting the
runtime" any more. The major notion now is "bootstrapping the initial task".
This allows creation of different sched pools with different io factories.
Namely, this will be used to test the basic I/O loop in the green crate. This
can also be used to override the global default.
The scheduler pool now has a much more simplified interface. There is now a
clear distinction between creating the pool and then interacting the pool. When
a pool is created, all schedulers are not active, and only later if a spawn is
done does activity occur.
There are four operations that you can do on a pool:
1. Create a new pool. The only argument to this function is the configuration
for the scheduler pool. Currently the only configuration parameter is the
number of threads to initially spawn.
2. Spawn a task into this pool. This takes a procedure and task configuration
options and spawns a new task into the pool of schedulers.
3. Spawn a new scheduler into the pool. This will return a handle on which to
communicate with the scheduler in order to do something like a pinned task.
4. Shut down the scheduler pool. This will consume the scheduler pool, request
all of the schedulers to shut down, and then wait on all the scheduler
threads. Currently this will block the invoking OS thread, but I plan on
making 'Thread::join' not a thread-blocking call.
These operations can be used to encode all current usage of M:N schedulers, as
well as providing a simple interface through which a pool can be modified. There
is currently no way to remove a scheduler from a pool of scheduler, as there's
no way to guarantee that a scheduler has exited. This may be added in the
future, however (as necessary).
In the compiled version of local_ptr (that with #[thread_local]), the take()
funciton didn't zero-out the previous pointer, allowing for multiple takes (with
fewer runtime assertions being tripped).
This extracts everything related to green scheduling from libstd and introduces
a new libgreen crate. This mostly involves deleting most of std::rt and moving
it to libgreen.
Along with the movement of code, this commit rearchitects many functions in the
scheduler in order to adapt to the fact that Local::take now *only* works on a
Task, not a scheduler. This mostly just involved threading the current green
task through in a few locations, but there were one or two spots where things
got hairy.
There are a few repercussions of this commit:
* tube/rc have been removed (the runtime implementation of rc)
* There is no longer a "single threaded" spawning mode for tasks. This is now
encompassed by 1:1 scheduling + communication. Convenience methods have been
introduced that are specific to libgreen to assist in the spawning of pools of
schedulers.
Printing is an incredibly useful debugging utility, and it's not much help if
your debugging prints just trigger an obscure abort when you need them most. In
order to handle this case, forcibly fall back to a libc::write implementation of
printing whenever a local task is not available.
Note that this is *not* a 1:1 fallback. All 1:1 rust tasks will still have a
local Task that it can go through (and stdio will be created through the local
IO factory), this is only a fallback for "no context" rust code (such as that
setting up the context).
It is not the case that all programs will always be able to acquire an instance
of the LocalIo borrow, so this commit exposes this limitation by returning
Option<LocalIo> from LocalIo::borrow().
At the same time, a helper method LocalIo::maybe_raise() has been added in order
to encapsulate the functionality of raising on io_error if there is on local I/O
available.
For now, this moves the following modules to std::sync
* UnsafeArc (also removed unwrap method)
* mpsc_queue
* spsc_queue
* atomics
* mpmc_bounded_queue
* deque
We may want to remove some of the queues, but for now this moves things out of
std::rt into std::sync
This module contains many M:N specific concepts. This will no longer be
available with libgreen, and most functions aren't really that necessary today
anyway. New testing primitives will be introduced as they become available for
1:1 and M:N.
A new io::test module is introduced with the new ip4/ip6 address helpers to
continue usage in io tests.
This trait is used to abstract the differences between 1:1 and M:N scheduling
and is the sole dispatch point for the differences between these two scheduling
modes.
This, and the following series of commits, is not intended to compile. Only
after the entire transition is complete are programs expected to compile.
For `str.as_mut_buf`, un-closure-ification is achieved by outright removal (see commit message). The others are replaced by `.as_ptr`, `.as_mut_ptr` and `.len`
This code in resolve accidentally forced all types with an impl to become
public. This fixes it by default inheriting the privacy of what was previously
there and then becoming `true` if nothing else exits.
Closes#10545
* Streams are now ~3x faster than before (fewer allocations and more optimized)
* Based on a single-producer single-consumer lock-free queue that doesn't
always have to allocate on every send.
* Blocking via mutexes/cond vars outside the runtime
* Streams work in/out of the runtime seamlessly
* Select now works in/out of the runtime seamlessly
* Streams will now fail!() on send() if the other end has hung up
* try_send() will not fail
* PortOne/ChanOne removed
* SharedPort removed
* MegaPipe removed
* Generic select removed (only one kind of port now)
* API redesign
* try_recv == never block
* recv_opt == block, don't fail
* iter() == Iterator<T> for Port<T>
* removed peek
* Type::new
* Removed rt::comm
This replaces the link meta attributes with a pkgid attribute and uses a hash
of this as the crate hash. This makes the crate hash computable by things
other than the Rust compiler. It also switches the hash function ot SHA1 since
that is much more likely to be available in shell, Python, etc than SipHash.
Fixes#10188, #8523.
This implements parts of the changes to `Result` and `Option` I proposed and discussed in this thread: https://mail.mozilla.org/pipermail/rust-dev/2013-November/006254.html
This PR includes:
- Adding `ok()` and `err()` option adapters for both `Result` variants.
- Removing `get_ref`, `expect` and iterator constructors for `Result`, as they are reachable with the variant adapters.
- Removing `Result`s `ToStr` bound on the error type because of composability issues. (See https://mail.mozilla.org/pipermail/rust-dev/2013-November/006283.html)
- Some warning cleanups
In order to keep up to date with changes to the libraries that `llvm-config`
spits out, the dependencies to the LLVM are a dynamically generated rust file.
This file is now automatically updated whenever LLVM is updated to get kept
up-to-date.
At the same time, this cleans out some old cruft which isn't necessary in the
makefiles in terms of dependencies.
Closes#10745Closes#10744
Right now, as pointed out in #8132, it is very easy to introduce a subtle race
in the runtime. I believe that this is the cause of the current flakiness on the
bots.
I have taken the last idea mentioned in that issue which is to use a lock around
descheduling and context switching in order to solve this race.
Closes#8132
Right now, as pointed out in #8132, it is very easy to introduce a subtle race
in the runtime. I believe that this is the cause of the current flakiness on the
bots.
I have taken the last idea mentioned in that issue which is to use a lock around
descheduling and context switching in order to solve this race.
Closes#8132