This commit moves all thread-blocking I/O functions from the std::os module.
Their replacements can be found in either std::rt::io::file or in a hidden
"old_os" module inside of native::file. I didn't want to outright delete these
functions because they have a lot of special casing learned over time for each
OS/platform, and I imagine that these will someday get integrated into a
blocking implementation of IoFactory. For now, they're moved to a private module
to prevent bitrot and still have tests to ensure that they work.
I've also expanded the extensions to a few more methods defined on Path, most of
which were previously defined in std::os but now have non-thread-blocking
implementations as part of using the current IoFactory.
The api of io::file is in flux, but I plan on changing it in the next commit as
well.
Closes#10057
This involved changing a fair amount of code, rooted in how we access the local
IoFactory instance. I added a helper method to the rtio module to access the
optional local IoFactory. This is different than before in which it was assumed
that a local IoFactory was *always* present. Now, a separate io_error is raised
when an IoFactory is not present, yet I/O is requested.
This removes the stacking of type parameters that occurs when invoking
trait methods, and fixes all places in the standard library that were
relying on it. It is somewhat awkward in places; I think we'll probably
want something like the `Foo::<for T>::new()` syntax.
Each IO handle has a home event loop, which created it.
When a task wants to use an IO handle, it must first make sure it is on that home event loop.
It uses the scheduler handle in the IO handle to send itself there before starting the IO action.
Once the IO action completes, the task restores its previous home state.
If it is an AnySched task, then it will be executed on the new scheduler.
If it has a normal home, then it will return there before executing any more code after the IO action.