The proper usage of shared types is now sharing through `&self` rather than
`&mut self` because the mutable version will provide stronger guarantees (no
aliasing on *any* thread).
std: remove the `equals` method from `TotalEq`.
`TotalEq` is now just an assertion about the `Eq` impl of a
type (i.e. `==` is a total equality if a type implements `TotalEq`) so
the extra method is just confusing.
Also, a new method magically appeared as a hack to allow deriving to
assert that the contents of a struct/enum are also TotalEq, because the
deriving infrastructure makes it very hard to do anything but create a
trait method. (You didn't hear about this horrible work-around from me
:(.)
`TotalEq` is now just an assertion about the `Eq` impl of a
type (i.e. `==` is a total equality if a type implements `TotalEq`) so
the extra method is just confusing.
Also, a new method magically appeared as a hack to allow deriving to
assert that the contents of a struct/enum are also TotalEq, because the
deriving infrastructure makes it very hard to do anything but create a
trait method. (You didn't hear about this horrible work-around from me
:(.)
`Vec` is now used for the internal buffer instead of `~[]`. Some module
level documentation somehow ended up attached to `BufferedReader` so I
fixed that as well.
This needs to be removed as part of removing `~[T]`. Partial type hints
are now allowed, and will remove the need to add a version of this
method for `Vec<T>`. For now, this involves a few workarounds for
partial type hints not completely working.
`Vec` is now used for the internal buffer instead of `~[]`. Some module
level documentation somehow ended up attached to `BufferedReader` so I
fixed that as well.
This commit removes the `get()` method from `Ref` and `RefMut` in favor of the `*` operator, and removes all usage of the `deref()` function manually from rustc, favoring using `*` instead.
Some of the code is a little wacky, but that's due to either #13044 or #13042
I've found a common use case being to fill a slice (not an owned vector)
completely with bytes. It's posible for short reads to happen, and if you're
trying to get an exact number of bytes then this helper will be useful.
`FormatMessageW()` is called by `std::os::last_os_error()` to convert
errno into string, but the function may fail on non-english locale.
I don't know why it fails, but anyway it's better to return errno
than to `fail!()` in the case.
Fixes#13075Fixes#13073
These are superfluous now that we have fixed rvalue lifetimes and Deref.
I'd also like to kill off `get` and `set`, but that'll be a large change so I want to make sure that we actually want to do that first.
These methods can be mistaken for general "read some bytes" utilities when
they're actually only meant for reading an exact number of bytes. By renaming
them it's much clearer about what they're doing without having to read the
documentation.
Closes#12892
Replace syntax::opt_vec with syntax::owned_slice
The `owned_slice::OwnedSlice` is `(*T, uint)` (i.e. a direct equivalent to DSTs `~[T]`).
This shaves two words off the old OptVec type; and also makes substituting in other implementations easy, by removing all the mutation methods. (And also everything that's very rarely/never used.)
The compiler will no longer inject libgreen as the default runtime for rust
programs, this commit switches it over to libnative by default. Now that
libnative has baked for some time, it is ready enough to start getting more
serious usage as the default runtime for rustc generated binaries.
We've found that there isn't really a correct decision in choosing a 1:1 or M:N
runtime as a default for all applications, but it seems that a larger number of
programs today would work more reasonable with a native default rather than a
green default.
With this commit come a number of bugfixes:
* The main native task is now named "<main>"
* The main native task has the stack bounds set up properly
* #[no_uv] was renamed to #[no_start]
* The core-run-destroy test was rewritten for both libnative and libgreen and
one of the tests was modified to be more robust.
* The process-detach test was locked to libgreen because it uses signal handling
test: Remove all `~[T]` from tests, libgetopts, compiletest, librustdoc, and libnum
And most from libtest, libflate, and adds `deny(deprecated_owned_vector)`s to the smaller modules with that have zero (or nearly zero) uses of `~[T]`.
Revival of #12837
These methods can be mistaken for general "read some bytes" utilities when
they're actually only meant for reading an exact number of bytes. By renaming
them it's much clearer about what they're doing without having to read the
documentation.
Closes#12892
In Rust, the strongest guarantee that `&mut` provides is that the memory
pointed to is *not aliased*, whereas `&`'s guarantees are much weaker:
that the value can be aliased, and may be mutated under proper precautions
(interior mutability).
Our atomics though use `&mut` for mutation even while creating multiple
aliases, so this changes them to use 'interior mutability', mutating
through immutable references.
`Share` implies that all *reachable* content is *threadsafe*.
Threadsafe is defined as "exposing no operation that permits a data race if multiple threads have access to a &T pointer simultaneously". (NB: the type system should guarantee that if you have access to memory via a &T pointer, the only other way to gain access to that memory is through another &T pointer)...
Fixes#11781
cc #12577
What this PR will do
================
- [x] Add Share kind and
- [x] Replace usages of Freeze with Share in bounds.
- [x] Add Unsafe<T> #12577
- [x] Forbid taking the address of a immutable static item with `Unsafe<T>` interior
What's left to do in a separate PR (after the snapshot)?
===========================================
- Remove `Freeze` completely
this comes from a discussion on IRC where the split between stdin and stdout
seemed unnatural, and the fact that reading on stdin won't flush stdout, which
is unlike every other language (including C's stdio).
This adds lots of docs to the atomics module. Two of the examples
are using the future atomics API (relying on `Share`) and are ignored temporarily.
I discovered a bug in the way AtomicBool's fetch_nand method is
implemented and fixed it by using the correct value for `true`.
I also fixed the implementation of AcqRel fences (it was only doing
a release barrier), and made a "relaxed" fence a failure.
possible by also calling `clone_from` on it.
In general, `Clone` implementors that overwrite `clone_from`
should try to to use it recursivly for substructures.
A major discoverability issue with rustdoc is that all crates have their
documentation built in isolation, so it's difficult when looking at the
documentation for libstd to learn that there's a libcollections crate with a
HashMap in it.
This commit moves rustdoc a little closer to improving the multiple crate
experience. This unifies all search indexes for all crates into one file so all
pages share the same search index. This allows searching to work across crates
in the same documentation directory (as the standard distribution is currently
built).
This strategy involves updating a shared file amongst many rustdoc processes, so
I implemented a simple file locking API for handling synchronization for updates
to the shared files.
cc #12554
This adds lots of docs to the atomics module. Two of the examples
are using the future atomics API and are ignored temporarily.
I discovered a bug in the way AtomicBool's fetch_nand method is
implemented and fixed it by using the correct value for `true`.
I also fixed the implementation of AcqRel fences (it was only doing
a release barrier), and made a "relaxed" fence a failure.
This will enable rustdoc to treat them specially.
I also got rid of `std::cmp::cmp2`, which is isomorphic to the `TotalOrd` impl for 2-tuples and never used.
This commit switches over the backtrace infrastructure from piggy-backing off
the RUST_LOG environment variable to using the RUST_BACKTRACE environment
variable (logging is now disabled in libstd).
This commit removes all internal support for the previously used __log_level()
expression. The logging subsystem was previously modified to not rely on this
magical expression. This also removes the only other function to use the
module_data map in trans, decl_gc_metadata. It appears that this is an ancient
function from a GC only used long ago.
This does not remove the crate map entirely, as libgreen still uses it to hook
in to the event loop provided by libgreen.
This commit moves all logging out of the standard library into an external
crate. This crate is the new crate which is responsible for all logging macros
and logging implementation. A few reasons for this change are:
* The crate map has always been a bit of a code smell among rust programs. It
has difficulty being loaded on almost all platforms, and it's used almost
exclusively for logging and only logging. Removing the crate map is one of the
end goals of this movement.
* The compiler has a fair bit of special support for logging. It has the
__log_level() expression as well as generating a global word per module
specifying the log level. This is unfairly favoring the built-in logging
system, and is much better done purely in libraries instead of the compiler
itself.
* Initialization of logging is much easier to do if there is no reliance on a
magical crate map being available to set module log levels.
* If the logging library can be written outside of the standard library, there's
no reason that it shouldn't be. It's likely that we're not going to build the
highest quality logging library of all time, so third-party libraries should
be able to provide just as high-quality logging systems as the default one
provided in the rust distribution.
With a migration such as this, the change does not come for free. There are some
subtle changes in the behavior of liblog vs the previous logging macros:
* The core change of this migration is that there is no longer a physical
log-level per module. This concept is still emulated (it is quite useful), but
there is now only a global log level, not a local one. This global log level
is a reflection of the maximum of all log levels specified. The previously
generated logging code looked like:
if specified_level <= __module_log_level() {
println!(...)
}
The newly generated code looks like:
if specified_level <= ::log::LOG_LEVEL {
if ::log::module_enabled(module_path!()) {
println!(...)
}
}
Notably, the first layer of checking is still intended to be "super fast" in
that it's just a load of a global word and a compare. The second layer of
checking is executed to determine if the current module does indeed have
logging turned on.
This means that if any module has a debug log level turned on, all modules
with debug log levels get a little bit slower (they all do more expensive
dynamic checks to determine if they're turned on or not).
Semantically, this migration brings no change in this respect, but
runtime-wise, this will have a perf impact on some code.
* A `RUST_LOG=::help` directive will no longer print out a list of all modules
that can be logged. This is because the crate map will no longer specify the
log levels of all modules, so the list of modules is not known. Additionally,
warnings can no longer be provided if a malformed logging directive was
supplied.
The new "hello world" for logging looks like:
#[phase(syntax, link)]
extern crate log;
fn main() {
debug!("Hello, world!");
}
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
The old comment of as_mut_slice() did not describe the function correctly. The new one does.
Also refactored option::iter() and option::mut_iter() to use as_ref() and as_mut() instead of match.
I ignored AtomicU64 methods on MIPS target
because libgcc doesn't implement MIPS32 64-bit atomic operations.
Otherwise it would cause link failure.
By the way, the patched LLVM doesn't have MIPS split stack anymore.
Should I file an issue about that?
This commit shreds all remnants of libextra from the compiler and standard
distribution. Two modules, c_vec/tempfile, were moved into libstd after some
cleanup, and the other modules were moved to separate crates as seen fit.
Closes#8784Closes#12413Closes#12576
The `Float` trait provides correct `min` and `max` methods on floating
point types, providing a consistent result regardless of the order the
parameters are passed.
These generic functions do not take the necessary performance hit to
correctly support a partial order, so the true requirement should be
given as a type bound.
Closes#12712
The `Float` trait provides correct `min` and `max` methods on floating
point types, providing a consistent result regardless of the order the
parameters are passed.
These generic functions do not take the necessary performance hit to
correctly support a partial order, so the true requirement should be
given as a type bound.
Closes#12712