The RFC for arbitrary self types v2 declares that we should reject
"generic" self types. This commit does so.
The definition of "generic" was unclear in the RFC, but has been
explored in
https://github.com/rust-lang/rust/issues/129147
and the conclusion is that "generic" means any `self` type which
is a type parameter defined on the method itself, or references
to such a type.
This approach was chosen because other definitions of "generic"
don't work. Specifically,
* we can't filter out generic type _arguments_, because that would
filter out Rc<Self> and all the other types of smart pointer
we want to support;
* we can't filter out all type params, because Self itself is a
type param, and because existing Rust code depends on other
type params declared on the type (as opposed to the method).
This PR decides to make a new error code for this case, instead of
reusing the existing E0307 error. This makes the code a
bit more complex, but it seems we have an opportunity to provide
specific diagnostics for this case so we should do so.
This PR filters out generic self types whether or not the
'arbitrary self types' feature is enabled. However, it's believed
that it can't have any effect on code which uses stable Rust, since
there are no stable traits which can be used to indicate a valid
generic receiver type, and thus it would have been impossible to
write code which could trigger this new error case.
It is however possible that this could break existing code which
uses either of the unstable `arbitrary_self_types` or
`receiver_trait` features. This breakage is intentional; as
we move arbitrary self types towards stabilization we don't want
to continue to support generic such types.
This PR adds lots of extra tests to arbitrary-self-from-method-substs.
Most of these are ways to trigger a "type mismatch" error which
9b82580c73/compiler/rustc_hir_typeck/src/method/confirm.rs (L519)
hopes can be minimized by filtering out generics in this way.
We remove a FIXME from confirm.rs suggesting that we make this change.
It's still possible to cause type mismatch errors, and a subsequent
PR may be able to improve diagnostics in this area, but it's harder
to cause these errors without contrived uses of the turbofish.
This is a part of the arbitrary self types v2 project,
https://github.com/rust-lang/rfcs/pull/3519https://github.com/rust-lang/rust/issues/44874
r? @wesleywiser
Fix directives for lint-non-snake-case-crate
This test fails on targets without unwinding or with `--target-rustcflags=-Cpanic=abort` because the proc macro was compiled as the target, not the host. Some targets were explicitly disabled to pass CI, but these directives are more general.
* `needs-dynamic-linking` is self explanatory
* `force-host` for proc macros
* `no-prefer-dynamic` is apparently also used for proc macros
Note that `needs-unwind` can also be useful for situations other than proc macros where unwinding is necessary.
r? `@jieyouxu`
try-job: test-various
In Rust 2024, by default lifetimes will be captured which does not
reflect the reality since we return an iterator of `DefId` which do
not capture the input parameters.
cg_llvm: Clean up FFI calls for operand bundles
All of these FFI functions have equivalents in the stable LLVM-C API, though `LLVMBuildCallBr` requires a temporary polyfill on LLVM 18.
This PR also creates a clear split between `OperandBundleOwned` and `OperandBundle`, and updates the internals of the owner to be a little less terrifying.
Use `token_descr` more in error messages
This is the first two commits from #124141, put into their own PR to get things rolling. Commit messages have the details.
r? ``@estebank``
cc ``@petrochenkov``
Point to Fuchsia team in platform support docs
This consolidates our docs into a single source of truth for the current Fuchsia maintainers.
r? ```@tmandry```
powerpc64-ibm-aix: update maintainters
Chaofan (`@ecnelises)` and Kai (`@bzEq)` will be passing over maintainership for the target over to David Tenty (`@daltenty)` and Chris Cambly (`@gilamn5tr)`
TypingMode: merge intercrate, reveal, and defining_opaque_types
This adds `TypingMode` and uses it in most places. We do not yet remove `Reveal` from `param_env`s. This and other future work as tracked in #132279 and via `FIXME`s.
Fetching the `TypingMode` of the `InferCtxt` asserts that the `TypingMode` agrees with `ParamEnv::reveal` to make sure we don't introduce any subtle bugs here. This will be unnecessary once `ParamEnv::reveal` no longer exists.
As the `TypingMode` is now a part of the query input, I've merged the coherence and non-coherence caches for the new solver. I've also enabled the local `infcx` cache during coherence by clearing the cache when forking it with a different `TypingMode`.
#### `TypingMode::from_param_env`
I am using this even in cases where I know that the `param_env` will always be `Reveal::UserFacing`. This is to make it easier to correctly refactor this code in the future, any time we use `Reveal::UserFacing` in a body while not defining its opaque types is incorrect and should use a `TypingMode` which only reveals opaques defined by that body instead, cc #124598
r? ``@compiler-errors``
Don't lint `irrefutable_let_patterns` on leading patterns if `else if` let-chains
fixes#128661
Is there any preference where the test goes? There looks to be several places it could fit.
Use Hacker's Delight impl in `i64::midpoint` instead of wide `i128` impl
This PR switches `i64::midpoint` and (`isize::midpoint` where `isize == i64`) to using our Hacker's Delight impl instead of wide `i128` implementation.
As LLVM seems to be outperformed by the complexity of signed 128-bits number compared to our Hacker's Delight implementation.[^1]
It doesn't seems like it's an improvement for the other sizes[^2], so we let them with the wide implementation.
[^1]: https://rust.godbolt.org/z/ravE75EYj
[^2]: https://rust.godbolt.org/z/fzr171zKh
r? libs
`Formatter` currently has a `RefCell<Option<Results>>` field. This is so
the `Results` can be temporarily taken and put into a `ResultsCursor`
that is used by `BlockFormatter`, and then put back, which is messy.
This commit changes `Formatter` to have a `RefCell<ResultsCursor>` and
`BlockFormatter` to have a `&mut ResultsCursor`, which greatly
simplifies the code at the `Formatter`/`BlockFormatter` interaction
point in `Formatter::node_label`. It also means we construct a
`ResultsCursor` once per `Formatter`, instead of once per `node_label`
call.
The commit also:
- documents the reason for the `RefCell`;
- adds a `Formatter::body` method, replacing the `Formatter::body`
field.
This test fails on targets without unwinding because the proc macro was
compiled as the target, not the host. Some targets were explicitly
disabled to pass CI, but these directives are more general.
Fixes Fuchsia tests.
It's no longer needed. `Engine::iterate_to_fixpoint` can be inlined into
`Analysis::iterate_to_fixpoint` and removed. The commit also renames
`engine.rs` as `results.rs`.
This is a standard pattern:
```
MyAnalysis.into_engine(tcx, body).iterate_to_fixpoint()
```
`into_engine` and `iterate_to_fixpoint` are always called in pairs, but
sometimes with a builder-style `pass_name` call between them. But a
builder-style interface is overkill here. This has been bugging me a for
a while.
This commit:
- Merges `Engine::new` and `Engine::iterate_to_fixpoint`. This removes
the need for `Engine` to have fields, leaving it as a trivial type
that the next commit will remove.
- Renames `Analysis::into_engine` as `Analysis::iterate_to_fixpoint`,
gives it an extra argument for the optional pass name, and makes it
call `Engine::iterate_to_fixpoint` instead of `Engine::new`.
This turns the pattern from above into this:
```
MyAnalysis.iterate_to_fixpoint(tcx, body, None)
```
which is shorter at every call site, and there's less plumbing required
to support it.
This is a standard pattern:
```
MyAnalysis.into_engine(tcx, body).iterate_to_fixpoint()
```
`into_engine` and `iterate_to_fixpoint` are always called in pairs, but
sometimes with a builder-style `pass_name` call between them. But a
builder-style interface is overkill here. This has been bugging me a for
a while.
This commit:
- Merges `Engine::new` and `Engine::iterate_to_fixpoint`. This removes
the need for `Engine` to have fields, leaving it as a trivial type
that the next commit will remove.
- Renames `Analysis::into_engine` as `Analysis::iterate_to_fixpoint`,
gives it an extra argument for the optional pass name, and makes it
call `Engine::iterate_to_fixpoint` instead of `Engine::new`.
This turns the pattern from above into this:
```
MyAnalysis.iterate_to_fixpoint(tcx, body, None)
```
which is shorter at every call site, and there's less plumbing required
to support it.
Add new `trivial_map_over_range` lint
This lint checks for code that looks like
```rust
let something : Vec<_> = (0..100).map(|_| {
1 + 2 + 3
}).collect();
```
which is more clear as
```rust
let something : Vec<_> = std::iter::repeat_with(|| {
1 + 2 + 3
}).take(100).collect();
```
That is, a map over a range which does nothing with the parameter passed to it is simply a function (or closure) being called `n` times and could be more semantically expressed using `take`.
- [x] Followed [lint naming conventions][lint_naming]
- [x] Added passing UI tests (including committed `.stderr` file)
- [x] `cargo test` passes locally
- [x] Executed `cargo dev update_lints`
- [x] Added lint documentation
- [x] Run `cargo dev fmt`
changelog: new lint: [`trivial_map_over_range`] `restriction`
The initial naming of "Abi" was an awful mistake, conveying wrong ideas
about how psABIs worked and even more about what the enum meant.
It was only meant to represent the way the value would be described to
a codegen backend as it was lowered to that intermediate representation.
It was never meant to mean anything about the actual psABI handling!
The conflation is because LLVM typically will associate a certain form
with a certain ABI, but even that does not hold when the special cases
that actually exist arise, plus the IR annotations that modify the ABI.
Reframe `rustc_abi::Abi` as the `BackendRepr` of the type, and rename
`BackendRepr::Aggregate` as `BackendRepr::Memory`. Unfortunately, due to
the persistent misunderstandings, this too is now incorrect:
- Scattered ABI-relevant code is entangled with BackendRepr
- We do not always pre-compute a correct BackendRepr that reflects how
we "actually" want this value to be handled, so we leave the backend
interface to also inject various special-cases here
- In some cases `BackendRepr::Memory` is a "real" aggregate, but in
others it is in fact using memory, and in some cases it is a scalar!
Our rustc-to-backend lowering code handles this sort of thing right now.
That will eventually be addressed by lifting duplicated lowering code
to either rustc_codegen_ssa or rustc_target as appropriate.
This lint checks for code that looks like
```rust
let something : Vec<_> = (0..100).map(|_| {
1 + 2 + 3
}).collect();
```
which is more clear as
```rust
let something : Vec<_> = std::iter::repeat_with(|| {
1 + 2 + 3
}).take(100).collect();
```
or
```rust
let something : Vec<_> =
std::iter::repeat_n(1 + 2 + 3, 100)
.collect();
```
That is, a map over a range which does nothing with the parameter
passed to it is simply a function (or closure) being called `n`
times and could be more semantically expressed using `take`.
Rollup of 6 pull requests
Successful merges:
- #131984 (Stabilize if_let_rescope)
- #132151 (Ensure that resume arg outlives region bound for coroutines)
- #132157 (Remove detail from label/note that is already available in other note)
- #132274 (Cleanup op lookup in HIR typeck)
- #132319 (cg_llvm: Clean up FFI calls for setting module flags)
- #132321 (xous: sync: remove `rustc_const_stable` attribute on Condvar and Mutex new())
r? `@ghost`
`@rustbot` modify labels: rollup