The failure functions are generic, meaning they're candidates for getting
inlined across crates. This has been happening, leading to monstrosities like
that found in #11549. I have verified that the codegen is *much* better now that
we're not inlining the failure path (the slow path).
This will allow capturing of common things like logging messages, stdout prints
(using stdio println), and failure messages (printed to stderr). Any new prints
added to libstd should be funneled through these task handles to allow capture
as well.
Additionally, this commit redirects logging back through a `Logger` trait so the
log level can be usefully consumed by an arbitrary logger.
This commit also introduces methods to set the task-local stdout handles:
* std::io::stdio::set_stdout
* std::io::stdio::set_stderr
* std::io::logging::set_logger
These methods all return the previous logger just in case it needs to be used
for inspection.
I plan on using this infrastructure for extra::test soon, but we don't quite
have the primitives that I'd like to use for it, so it doesn't migrate
extra::test at this time.
Closes#6369
This will allow capturing of common things like logging messages, stdout prints
(using stdio println), and failure messages (printed to stderr). Any new prints
added to libstd should be funneled through these task handles to allow capture
as well.
Additionally, this commit redirects logging back through a `Logger` trait so the
log level can be usefully consumed by an arbitrary logger.
This commit also introduces methods to set the task-local stdout handles:
* std::io::stdio::set_stdout
* std::io::stdio::set_stderr
* std::io::logging::set_logger
These methods all return the previous logger just in case it needs to be used
for inspection.
I plan on using this infrastructure for extra::test soon, but we don't quite
have the primitives that I'd like to use for it, so it doesn't migrate
extra::test at this time.
Closes#6369
This reverts commit f1b5f59287.
Using a private function of a library is a bad idea: several people (on
Linux) were meeting with linking errors because of it (different/older
versions of glibc).
This removes the feature where newtype structs can be dereferenced like pointers, and likewise where certain enums can be dereferenced (which I imagine nobody realized still existed). This ad-hoc behavior is to be replaced by a more general overloadable dereference trait in the future.
I've been nursing this patch for two months and think it's about rebased up to master.
@nikomatsakis this makes a bunch of your type checking code noticeably uglier.
If there is a lot of data in thread-local storage some implementations
of pthreads (e.g. glibc) fail if you don't request a stack large enough
-- by adjusting for the minimum size we guarantee that our stacks are
always large enough. Issue #6233.
Previously this was an `rtabort!`, indicating a runtime bug. Promote
this to a more intentional abort and print a (slightly) more
informative error message.
Can't test this sense our test suite can't handle an abort exit.
I consider this to close#910, and that we should open another issue about implementing less conservative semantics here.
If there is a lot of data in thread-local storage some implementations
of pthreads (e.g. glibc) fail if you don't request a stack large enough
-- by adjusting for the minimum size we guarantee that our stacks are
always large enough. Issue #6233.
Previously this was an rtabort!, indicating a runtime bug. Promote
this to a more intentional abort and print a (slightly) more
informative error message.
Can't test this sense our test suite can't handle an abort exit.
For libgreen, bookeeping should not be global but rather on a per-pool basis.
Inside libnative, it's known that there must be a global counter with a
mutex/cvar.
The benefit of taking this strategy is to remove this functionality from libstd
to allow fine-grained control of it through libnative/libgreen. Notably, helper
threads in libnative can manually decrement the global count so they don't count
towards the global count of threads. Also, the shutdown process of *all* sched
pools is now dependent on the number of tasks in the pool being 0 rather than
this only being a hardcoded solution for the initial sched pool in libgreen.
This involved adding a Local::try_take() method on the Local trait in order for
the channel wakeup to work inside of libgreen. The channel send was happening
from a SchedTask when there is no Task available in TLS, and now this is
possible to work (remote wakeups are always possible, just a little slower).
For libgreen, bookeeping should not be global but rather on a per-pool basis.
Inside libnative, it's known that there must be a global counter with a
mutex/cvar.
The benefit of taking this strategy is to remove this functionality from libstd
to allow fine-grained control of it through libnative/libgreen. Notably, helper
threads in libnative can manually decrement the global count so they don't count
towards the global count of threads. Also, the shutdown process of *all* sched
pools is now dependent on the number of tasks in the pool being 0 rather than
this only being a hardcoded solution for the initial sched pool in libgreen.
This involved adding a Local::try_take() method on the Local trait in order for
the channel wakeup to work inside of libgreen. The channel send was happening
from a SchedTask when there is no Task available in TLS, and now this is
possible to work (remote wakeups are always possible, just a little slower).
This commit uniforms the short title of modules provided by libstd,
in order to make their roles more explicit when glancing at the index.
Signed-off-by: Luca Bruno <lucab@debian.org>
* vec::raw::to_ptr is gone
* Pausible => Pausable
* Removing @
* Calling the main task "<main>"
* Removing unused imports
* Removing unused mut
* Bringing some libextra tests up to date
* Allowing compiletest to work at stage0
* Fixing the bootstrap-from-c rmake tests
* assert => rtassert in a few cases
* printing to stderr instead of stdout in fail!()
There was a race in the code previously where schedulers would *immediately*
shut down after spawning the main task (because the global task count would
still be 0). This fixes the logic by blocking the sched pool task in receving on
a port instead of spawning a task into the pool to receive on a port.
The modifications necessary were to have a "simple task" running by the time the
code is executing, but this is a simple enough thing to implement and I forsee
this being necessary to have implemented in the future anyway.
Note that this removes a number of run-pass tests which are exercising behavior
of the old runtime. This functionality no longer exists and is thoroughly tested
inside of libgreen and libnative. There isn't really the notion of "starting the
runtime" any more. The major notion now is "bootstrapping the initial task".
This allows creation of different sched pools with different io factories.
Namely, this will be used to test the basic I/O loop in the green crate. This
can also be used to override the global default.
The scheduler pool now has a much more simplified interface. There is now a
clear distinction between creating the pool and then interacting the pool. When
a pool is created, all schedulers are not active, and only later if a spawn is
done does activity occur.
There are four operations that you can do on a pool:
1. Create a new pool. The only argument to this function is the configuration
for the scheduler pool. Currently the only configuration parameter is the
number of threads to initially spawn.
2. Spawn a task into this pool. This takes a procedure and task configuration
options and spawns a new task into the pool of schedulers.
3. Spawn a new scheduler into the pool. This will return a handle on which to
communicate with the scheduler in order to do something like a pinned task.
4. Shut down the scheduler pool. This will consume the scheduler pool, request
all of the schedulers to shut down, and then wait on all the scheduler
threads. Currently this will block the invoking OS thread, but I plan on
making 'Thread::join' not a thread-blocking call.
These operations can be used to encode all current usage of M:N schedulers, as
well as providing a simple interface through which a pool can be modified. There
is currently no way to remove a scheduler from a pool of scheduler, as there's
no way to guarantee that a scheduler has exited. This may be added in the
future, however (as necessary).
In the compiled version of local_ptr (that with #[thread_local]), the take()
funciton didn't zero-out the previous pointer, allowing for multiple takes (with
fewer runtime assertions being tripped).
This extracts everything related to green scheduling from libstd and introduces
a new libgreen crate. This mostly involves deleting most of std::rt and moving
it to libgreen.
Along with the movement of code, this commit rearchitects many functions in the
scheduler in order to adapt to the fact that Local::take now *only* works on a
Task, not a scheduler. This mostly just involved threading the current green
task through in a few locations, but there were one or two spots where things
got hairy.
There are a few repercussions of this commit:
* tube/rc have been removed (the runtime implementation of rc)
* There is no longer a "single threaded" spawning mode for tasks. This is now
encompassed by 1:1 scheduling + communication. Convenience methods have been
introduced that are specific to libgreen to assist in the spawning of pools of
schedulers.
Printing is an incredibly useful debugging utility, and it's not much help if
your debugging prints just trigger an obscure abort when you need them most. In
order to handle this case, forcibly fall back to a libc::write implementation of
printing whenever a local task is not available.
Note that this is *not* a 1:1 fallback. All 1:1 rust tasks will still have a
local Task that it can go through (and stdio will be created through the local
IO factory), this is only a fallback for "no context" rust code (such as that
setting up the context).
It is not the case that all programs will always be able to acquire an instance
of the LocalIo borrow, so this commit exposes this limitation by returning
Option<LocalIo> from LocalIo::borrow().
At the same time, a helper method LocalIo::maybe_raise() has been added in order
to encapsulate the functionality of raising on io_error if there is on local I/O
available.
For now, this moves the following modules to std::sync
* UnsafeArc (also removed unwrap method)
* mpsc_queue
* spsc_queue
* atomics
* mpmc_bounded_queue
* deque
We may want to remove some of the queues, but for now this moves things out of
std::rt into std::sync
This module contains many M:N specific concepts. This will no longer be
available with libgreen, and most functions aren't really that necessary today
anyway. New testing primitives will be introduced as they become available for
1:1 and M:N.
A new io::test module is introduced with the new ip4/ip6 address helpers to
continue usage in io tests.