This rather crucial requirement was not checked. In most cases, that
didn't cause any trouble because the argument types are required to
outlive the call and are subtypes of a subformula of the callee type.
However, binary ops are taken by ref only indirectly, without it being
marked in the argument types, which led to the argument types not being
constrained anywhere causing spurious errors (as these are basically
unconstrainable, I don't think this change can break code). Of course,
the old way was also incorrent with contravariance, but that is still
unsound for other reasons.
This also improves rustc::front to get RUST_LOG to *somewhat* work.
Fixes#28999. That issue is one of the several regression introduced by #28669.
r? @pnkfelix
This rather crucial requirement was not checked. In most cases, that
didn't cause any trouble because the argument types are required to
outlive the call and are subtypes of a subformula of the callee type.
However, binary ops are taken by ref only indirectly, without it being
marked in the argument types, which led to the argument types not being
constrained anywhere causing spurious errors (as these are basically
unconstrainable, I don't think this change can break code). Of course,
the old way was also incorrent with contravariance, but that is still
unsound for other reasons.
This also improves rustc::front to get RUST_LOG to *somewhat* work.
Fixes#28999
paths, and construct paths for all definitions. Also, stop rewriting
DefIds for closures, and instead just load the closure data from
the original def-id, which may be in another crate.
This allows code to access the fields of tuples and tuple structs:
let x = (1i, 2i);
assert_eq!(x.1, 2);
struct Point(int, int);
let origin = Point(0, 0);
assert_eq!(origin.0, 0);
assert_eq!(origin.1, 0);
This breaks code that uses the `..xs` form anywhere but at the end of a
slice. For example:
match foo {
[ 1, ..xs, 2 ]
[ ..xs, 1, 2 ]
}
Add the `#![feature(advanced_slice_patterns)]` gate to reenable the
syntax.
RFC #54.
Closes#16951.
[breaking-change]
Fixes#16597
I'm not 100% sure this is the correct way to handle this - but I wasn't able to find a better way without doing way more refactoring of the code that I was comfortable with. Comments and criticism are appreciated 😄
[breaking-change]
1. The internal layout for traits has changed from (vtable, data) to (data, vtable). If you were relying on this in unsafe transmutes, you might get some very weird and apparently unrelated errors. You should not be doing this! Prefer not to do this at all, but if you must, you should use raw::TraitObject rather than hardcoding rustc's internal representation into your code.
2. The minimal type of reference-to-vec-literals (e.g., `&[1, 2, 3]`) is now a fixed size vec (e.g., `&[int, ..3]`) where it used to be an unsized vec (e.g., `&[int]`). If you want the unszied type, you must explicitly give the type (e.g., `let x: &[_] = &[1, 2, 3]`). Note in particular where multiple blocks must have the same type (e.g., if and else clauses, vec elements), the compiler will not coerce to the unsized type without a hint. E.g., `[&[1], &[1, 2]]` used to be a valid expression of type '[&[int]]'. It no longer type checks since the first element now has type `&[int, ..1]` and the second has type &[int, ..2]` which are incompatible.
3. The type of blocks (including functions) must be coercible to the expected type (used to be a subtype). Mostly this makes things more flexible and not less (in particular, in the case of coercing function bodies to the return type). However, in some rare cases, this is less flexible. TBH, I'm not exactly sure of the exact effects. I think the change causes us to resolve inferred type variables slightly earlier which might make us slightly more restrictive. Possibly it only affects blocks with unreachable code. E.g., `if ... { fail!(); "Hello" }` used to type check, it no longer does. The fix is to add a semicolon after the string.
declared with the same name in the same scope.
This breaks several common patterns. First are unused imports:
use foo::bar;
use baz::bar;
Change this code to the following:
use baz::bar;
Second, this patch breaks globs that import names that are shadowed by
subsequent imports. For example:
use foo::*; // including `bar`
use baz::bar;
Change this code to remove the glob:
use foo::{boo, quux};
use baz::bar;
Or qualify all uses of `bar`:
use foo::{boo, quux};
use baz;
... baz::bar ...
Finally, this patch breaks code that, at top level, explicitly imports
`std` and doesn't disable the prelude.
extern crate std;
Because the prelude imports `std` implicitly, there is no need to
explicitly import it; just remove such directives.
The old behavior can be opted into via the `import_shadowing` feature
gate. Use of this feature gate is discouraged.
This implements RFC #116.
Closes#16464.
[breaking-change]
methods.
This paves the way to associated items by introducing an extra level of
abstraction ("impl-or-trait item") between traits/implementations and
methods. This new abstraction is encoded in the metadata and used
throughout the compiler where appropriate.
There are no functional changes; this is purely a refactoring.
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]
r? @pnkfelix
This patch primarily does two things: (1) it prevents lifetimes from
leaking out of unboxed closures; (2) it allows unboxed closure type
notation, call notation, and construction notation to construct closures
matching any of the three traits.
This breaks code that looked like:
let mut f;
{
let x = &5i;
f = |&mut:| *x + 10;
}
Change this code to avoid having a reference escape. For example:
{
let x = &5i;
let mut f; // <-- move here to avoid dangling reference
f = |&mut:| *x + 10;
}
I believe this is enough to consider unboxed closures essentially
implemented. Further issues (for example, higher-rank lifetimes) should
be filed as followups.
Closes#14449.
[breaking-change]