Avoid silencing relevant follow-up errors
r? `@matthewjasper`
This PR only adds new errors to tests that are already failing and fixes one ICE.
Several tests were changed to not emit new errors. I believe all of them were faulty tests, and not explicitly testing for the code that had new errors.
Reorder check_item_type diagnostics so they occur next to the corresponding `check_well_formed` diagnostics
The first commit is just a cleanup.
The second commit moves most checks from `check_mod_item_types` into `check_well_formed`, invoking the checks in lockstep per-item instead of iterating over all items twice.
Implement constant propagation on top of MIR SSA analysis
This implements the idea I proposed in https://github.com/rust-lang/rust/pull/110719#issuecomment-1718324700
Based on https://github.com/rust-lang/rust/pull/109597
The value numbering "GVN" pass formulates each rvalue that appears in MIR with an abstract form (the `Value` enum), and assigns an integer `VnIndex` to each. This abstract form can be used to deduplicate values, reusing an earlier local that holds the same value instead of recomputing. This part is proposed in #109597.
From this abstract representation, we can perform more involved simplifications, for example in https://github.com/rust-lang/rust/pull/111344.
With the abstract representation `Value`, we can also attempt to evaluate each to a constant using the interpreter. This builds a `VnIndex -> OpTy` map. From this map, we can opportunistically replace an operand or a rvalue with a constant if their value has an associated `OpTy`.
The most relevant commit is [Evaluated computed values to constants.](2767c4912e)"
r? `@oli-obk`
Introduce `const Trait` (always-const trait bounds)
Feature `const_trait_impl` currently lacks a way to express “always const” trait bounds. This makes it impossible to define generic items like fns or structs which contain types that depend on const method calls (\*). While the final design and esp. the syntax of effects / keyword generics isn't set in stone, some version of “always const” trait bounds will very likely form a part of it. Further, their implementation is trivial thanks to the `effects` backbone.
Not sure if this needs t-lang sign-off though.
(\*):
```rs
#![feature(const_trait_impl, effects, generic_const_exprs)]
fn compute<T: const Trait>() -> Type<{ T::generate() }> { /*…*/ }
struct Store<T: const Trait>
where
Type<{ T::generate() }>:,
{
field: Type<{ T::generate() }>,
}
```
Lastly, “always const” trait bounds are a perfect fit for `generic_const_items`.
```rs
#![feature(const_trait_impl, effects, generic_const_items)]
const DEFAULT<T: const Default>: T = T::default();
```
Previously, we (oli, fee1-dead and I) wanted to reinterpret `~const Trait` as `const Trait` in generic const items which would've been quite surprising and not very generalizable.
Supersedes #117530.
---
cc `@oli-obk`
As discussed
r? fee1-dead (or compiler)
codegen: panic when trying to compute size/align of extern type
The alignment is also computed when accessing a field of extern type at non-zero offset, so we also panic in that case.
Previously `size_of_val` worked because the code path there assumed that "thin pointer" means "sized". But that's not true any more with extern types. The returned size and align are just blatantly wrong, so it seems better to panic than returning wrong results. We use a non-unwinding panic since code probably does not expect size_of_val to panic.
Attribute values must be literals. The error you get when that doesn't
hold is pretty bad, e.g.:
```
unexpected expression: 1 + 1
```
You also get the same error if the attribute value is a literal, but an
invalid literal, e.g.:
```
unexpected expression: "foo"suffix
```
This commit does two things.
- Changes the error message to "attribute value must be a literal",
which gives a better idea of what the problem is and how to fix it. It
also no longer prints the invalid expression, because the carets below
highlight it anyway.
- Separates the "not a literal" case from the "invalid literal" case.
Which means invalid literals now get the specific error at the literal
level, rather than at the attribute level.
detects redundant imports that can be eliminated.
for #117772 :
In order to facilitate review and modification, split the checking code and
removing redundant imports code into two PR.
interpret: simplify handling of shifts by no longer trying to handle signed and unsigned shift amounts in the same branch
While we're at it, also update comments in codegen and MIR building related to shifts, and fix the overflow error printed by Miri on negative shift amounts.